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PREFACE 

This Lecture Series No. 146 on the "Apphcation of Ada® Higher Order Language to Guidance and Control" is 
sponsored by the Guidance and Control Panel (GCP) of AGARD, and implemented by the Consultant and Exchange 
Programme of AGARD. The Department of Defense has stated that Ada shall become the single, common computer 
programming language for Defense mission-critical applications beginning in 1984. The proposal to make Ada a NATO 
standard High Order Language (HOL) as well, prompted the GCP to provided a Lecture Series embracing the basic 
structure, theories and principles embodied in this HOL. 

The need to reduce escalating software life-cycle costs is the raison d'etre for Ada. Early experience with the language 
suggests that the promise of increased software productivity can be fulfilled. However, many problems remain: the need for 
validated and efficient compilers targeted for computers suitable to the guidance and control application, and software 
development environments built around Ada, are two among the foremost. 

This Lecture Series addresses both the promise and the problems. Following an introduction to Ada, the structure and 
features of the language are described. Two special features of Ada, parallel processing and software reusability, are 
discussed in detail. Compiler development and validation, and the use of Ada in programming environments are described. 
Finally, the use of Ada in a real-world pilot project is described. 

Theodore F.Westermeier 
McDonnell Douglas Corporation 
St. Louis, Missouri 

® Ada is a registered trademark of the US Government (Ada Joint Program Office). 
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INTRODUCTION TO THE APPLICATION OF ADA® TO GUIDANCE AND CONTROL 

THEODORE F. WESTERMEIER 
MCDONNELL AIRCRAFT COMPANY 

MCDONNELL DOUGLAS CORPORATION 
P. 0. BOX 516 

ST. LOUIS, MO 63166 

The Department of Defense (DoD) has stated that Ada shall become the single, common computer 
programming language for defense mission-critical applications beginning in 1984. The proposal to make 
Ada a NATO standard High Order Language (HOL) as well, prompted the Guidance and Control Panel of AGARD 
to provide a Lecture Series embracing the basic structure, theories and principles embodied in this HOL. 

The need to reduce, or at least contain, escalating software life-cycle costs is the main reason 
for the existence of Ada. The costs of developing software for the DoD are expected to have a ten-fold 
growth from an estimated $2.8 billion in 1980 to as much as $30 billion in 1990, as shown in Figure 1. 
Accordingly, the U.S. Government is sponsoring several initiatives directed toward the development of 
improved software. These include a program called Software Technology for Adaptable, Reliable Systems, 
another called the Joint Service Software Engineering Environment, the newly established Software 
Engineering Institute at Carnegie Mellon University, and the Strategic Computing Program. Organizations 
outside the U.S. have also embarked on programs for improved software productivity. These include the 
European Esprit Consortium, and Great Britain's Alvey Programme. A key element in many of these 
initatives Is Ada. 

The application of Ada to guidance and control may, at first glance, appear to be a rather narrow 
focus. (Although Ada was originally intended for embedded computer systems, it nevertheless includes 
features applicable to a wide application domain. Indeed, there is currently wide-spread interest in 
Ada in applications that range from business to scientific.) Nevertheless, guidance and control is an 
important subset of embedded systems used throughout aerospace. If Ada can be successfully applied to 
guidance and control, it can be used in many embedded systems. Consequently, "guidance and control" 
can, in many ways, be read as "embedded". 

Guidance and control includes a wide range of application programs, as depicted in Figure 2. The 
list is by no means complete. The trend to closely-interacting and interdependent subsystems results in 
increasing levels of sophistication. Subsystems that were once outside guidance and control 
considerations are no longer. For instance, the propulsion system of a vertical take-off and landing 
aircraft becomes a critical control system effector during the hover mode, supplying control moments in 
addition to propulsive forces. The increased levels of sophistication dictate the increased use of high 
performance digital processors and operational software. Consequently, the growth in guidance and 
control software mirrors the exponential growth of DoD software in general. 

Guidance and control systems impose special requirements: the computation times must be acutely 
limited; the systems are mission critical, and often flight critical; severe limitations are placed on 
the size, weight, power and cost of the underlying digital mechanizations. These system requirements 
demand operational software that is efficient, reliable and maintainable. 

These special system requirements interact in complex ways and place stringent demands on Ada. For 
example, the dynamic performance of many guidance and control systems requires that the response times, 
transport lags, and iteration rates inherent in digital mechanizations be restricted to certain limited 
values, in order that the system performance not be compromised. This in turn requires that the Ada 
compiler be efficient. Of course, the higher the throughput of the target computer, the more compiler 
inefficiency that can be tolerated. But the size, power, weight and cost constraints limit the 
throughput that can be realized from realistic guidance and control computers. (After all, not many 
airborne systems can accommodate mainframe computers.) 

Early experience with the Ada language suggests that the promise of increased software productivity 
and reliability can be fulfilled. However, many problems remain: the need for validated and efficient 
compilers targeted for computers suitable to the guidance and control application, and software 
development environments built around Ada, are two at the top of the list. 

The lectures in this series are intended to emphasize the promise of Ada without minimizing the 
problems.  Accordingly they have been structured to address the following topics: 

o The origin of the "software crisis" and how Ada can alleviate it 

o Deficiencies of other HOL's rectified by Ada 

o Ada language facilities that have special relevance to real-time, embedded systems 

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office). 
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o Prognosis as to Ada's acceptance; some possible roadblocks 

o The role of tasking in embedded applications 

o How Ada supports tasking 

o The productivity implications of reusable software 

o How Ada supports the concept of reusable software 

o Ada compiler development issues:  rehostabillty, optimization, run-time environments, related 
Ada tools 

o The purpose and mechanics of validating a compiler 

o The economics of compiler development and validation 

o Are all but the most widely-used computers ruled out by the economics? 

o What validation proves, what is doesn't prove 

o Programming with Ada 

o The Ada Programming Support Environment .  . : , 

o The role of Ada software development tools ' 

o Practical results and experiences in applying Ada to some real-world, real-time embedded 
systems. 
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INTRODUCTION TO ADA 

by 
Richard E. Bolz 

6751 S. Dahlia Ct. 
Littleton, Co. 80122 

USA 

SUMMARY 

This paper discusses the development of the Ada programming language and current ex- 
periences with using the language. It presents the language as an embodiment of good soft- 
ware development principles. 

ABSTRACT 

The "Software Crisis", first recognized in the late 1960's is exemplified by software 
that IS late, expensive, filled with errors and nearly impossible to maintain The U S 
Department of Defense (DoD), the largest customer of software in the world decided to spon- 
sor the development of a common high-ordered programming language to give partial response 
to this continuing crisis. 

The language, Ada, has an interesting development history.  Public review of the 
language requirements resulted in a document which is small, concise and readable (counter 
to what we have come to expect as DoD documentation).  The resulting language embodies 
many of the principles of good software development which have emerged within the past 15 
years.  These principles include abstraction, information hiding, localization and modu- 
larity. 

The Ada language enhances transportability by eliminating almost all dependence on an 
operating system.  Hence, such capabilities as exception handling and concurrency become 
programming language features as opposed to operating system features. 

The DoD and NATO have adopted Ada as the common high-order language for all mission 
critical software (DoD in 1984 and NATO in 1986).  The success of the language will not 
be limited to military systems, however.  There appears to be wide-spread interest in the 
language_from such diverse areas as banking, geophysical activity, computer-based train- 
ing, artificial intelligence and accounting.  What started out as a language primarily 
for embedded computer systems is emerging as a language that can be easily adapted to a 
variety of application areas. 

Experienced users of the language have been quite positive in their evaluations and 
many managers claim that their software developers have experienced remarkable productivity 
increases.  Also many early results tend to allay fears that generated code and the com- 
pilation process would be too slow. 

THE SOFTWARE CRISIS 

No one in our industry can seriously argue that modern software is trivial to produce. 
Are there any among us who consistently develop software that comes in on time, on budget, 
works according to specs and is straightforward to modify?  Collectively, these attributes 
define the software crisis.! xhis phenomenon of difficulty in developing software was 
first recognized in the mid 1960's, about the time that we began to realize that the prob- 
lems we were asked to solve were becomming increasingly complex.  To compound matters, the 
emergence of various architectures caused us to desire software which was transportable; 
we needed (and still need) software which could run (with minor modification) on archi- 
tectures other than that on which it originally executed. 

This "crisis" generated considerable research into ways to do things better. A new 
appreciation for the system life cycle emerged.  Structured X, where X stands for coding 
programming, analysis, design, testing, walkthrough or any of several other software 
development activities, started to face us everywhere we turned.  Some of these have met 
with far more success than others.  Further, we began to experience an increased interest 
in developing tools to aid us in various phases of the system life cycle. 

THE DEPARTMENT OF DEFENSE RESPONSE 

The software crisis (some refer to it as a software depression) was and is most 
keenly felt by the U.S. Department of Defense (DoD), the largest single user of software 
in the world.  Early in the 1970's the DoD realized that language proliferation was a 
major cause of software difficulty.2  it was found that over 450 different languages were 
used in DoD mission-critical systems.  These systems include such diverse application 
areas as intelligence systems, cryptologic systems related to national security, command 
and control of military forces, weapons systems and administrative support for such sys- 
tems .J None of the 450 were found to dominate the others as far as frequency of use was 
concerned (although FORTRAN was used more than any other language). 

Mission-critical systems have some characteristics which are rarely found in more 
common systems such as payroll processing. Parallel processing and real-time response 
are two such characteristics.  Further, in the early 1970's mission critical systems 
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accoxmted for over 56% of the total DoD software budget.^ Some estimates show that soft- 
ware budget exceeding $32 billion annually by 1990 if standardization on a common language 
is not forthcoming.5 

In the mid 1970's, the DoD formed the High-Order Language Working Group (HOLWG) to 
investigate the feasibility of transition to a single language for mission-critical sys- 
tems.  This group was to (1) decide what features should be required in the language, (2) 
compare existing languages against those requirements and (3) make recommendation to either 
adopt an existing language or have one developed which meets the requirements." 

The DoD expected certain benefits to accrue with a single, high-order language. Among 
these benefits:' 

(1) Reduced cost by decreasing (if not eliminating) duplication of language- 
specific efforts across the lifecycle. 

(2) Improved communication by eliminating the "artificial"boundaries which 
hamper software technology transfer. 

(3) Focused research on embedded computer systems software.  A plurality of 
languages makes data gathering very difficult. 

(4) Decreased ties to particular vendors who might have the inside track 
when it comes to supporting their "unique" languages. 

(5) Focused energy on the problem at hand rather than on a new language 
custom built for the project. 

(6) Consolidation of fiscal capability resulting in a wider range of software 
development tools which can provide considerable leverage. 

(7) Decreased risk in using existing languages because of their current poor 
support. 

The approach to defining the requirements for a language was somewhat unique.  The 
HOLWG first generated a beginning collection of requirements and called the document STRAW- 
MAN.  Of course, this is not a novel approach.  Many task forces will meet and draft up a 
document which they will call "strawman".  They will then meet two week later, read their 
"strawman" and either modify it or accept it as final.  The HOLWG did not take this tradi- 
tional approach.  Instead, they submitted STRAWMAN to public review.  Reviewers from such 
diverse communities as academe, science, military, and business took part.  The results of 
this process were folded into the next iteration of the sequence,  WOODENMAN.  The process 
continued and produced TINMAN, IRONMAN, revised IRONMAN and finally, STEELMAN, the final 
definition of the language requirements.  Given this "Wizard of OZ" approach it is remark- 
able that the resulting language was not named Dorothy instead of Ada.  Two very pleasant 
surprises which came from this three-year requirements formulation are that the STEELMAN 
document is only 22 pages long and that it is quite easy to understand.» 

A Request For Proposal (RFP) was issued in 1977 for new languages which would meet 
the emerging requirements.  There were 17 responses with most of the proposed languages 
being based on Pascal.  A vigorous competition ensued and the eventual winner was the 
language submitted by Cll-Honewell Bull, a French corporation.  The design team was led 
by Jean Ichbiah and contained participants from several nations. 

The language was officially named "Ada" in the spring of 1979.  Prior to that time, 
the unofficial name of "DoD-1" (it should be obvious why they didn't use the name "DoD-0"). 
The name Ada honors the mathematician of the 19th century who, as colleague to Charles 
Babbage, developed an instruction set for the as yet unbuilt analytical engine.  She pro- 
ceeded to use this instruction set to solve some Bernoulli equations.  Since no previous 
algorithm for use on a computing device (real or theoretic) is known, we refer to her as 
the first computer programmer in history.9 

THE ENVIRONMENT 
Four of the original goals of the DoD common high-order language 
effort, which led to the definition of the Ada language, were to: 

Address the problem of life-cycle program costs 
Improve program reliability 
Promote the development of portable software, and 
Promote the development of portable software tools 

It was recognized from the beginning that these objectives would 
not be met by the language alone, but by a comprehensive, integrated 
programming environment.!" 

Early in the development of the requirements of the Ada language, it became apparent 
that a common language would not be sufficient to address the life-cycle problems of DoD 
mission-critical software.  Support for such a language would be enhanced by having an 
environment containing certain language-specific tools which could be used by all software 
developers using Ada.  Among these tools would be editors, linker/loaders, debuggers, etc. 

In 1978, a workshop was held to attempt to identify what an Ada Programming Support 
Environment might look like.  A document called PEBBLEMAN emerged shortly thereafter and, 
like STRAWMAN, was submitted to extensive public review.  The iterative process terminated 
with the STONEMAN document in February, 1979.  It is important to realize that the STONE- 
MAN document was not to be considered as a collection of firm requirements as was the case 
with STEELMAN, but as "...a yardstick against which competing versions of an APSE could be 
measured. "H 
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It was apparent that "...there (was) no consensus about what an APSE should look like 
The beauty of an APSE is in the eye of the beholder, and there are many beholders   No 
single APSE could fulfill all the wishes of all the participants."12 However there'was 
an agreement on certain characteristics or tools which would most likely be common to all 
APSEs.  This Minimal Ada Program Support Environment (MAPSE) became the focus to atten- 
tion.  It included compilers, link editors, simulators, symbolic (high level language) 
debuggers, editors, prettyprinters, set-use analyzers, dynamic analysis tools and con- 
figuration management routines. 

A major consideration for a MAPSE was that tools developed for one environment should 
be transportable to another environment.  Further, tools should be, to the extent possible, 
interoperable.  That is, tools should be able to invoke other tools within the environment! 
This transportability of tools raises the question of machine dependence.  Even though a 
tool would operate relative to a common language, it still had to execute on a given host 
architecture.  It is clear that transportability of software is hampered if that software 
is dependent upon its underlying host architecture or operating system. 

The writers of the STONEMAN document propose an interesting solution to this trans- 
portability delimma:  have the MAPSE tools execute on a virtual Ada machine.  They propose 
that a machine dependent Kemal Ada Program Support Environment (KAPSE) provide a machine 
independent interface to the MAPSE.  This KAPSE would contain such items as the APSE data 
base, database access routines, operator interface routines, operating system interface 
routines and a complete runtime support package.13 

THE LANGUAGE 

As a result of the public review process, the final set of language requirements 
(foirnd in the STEELMAN document) included the following language features: 

Strong typing and type conversions 
Relative and absolute precision 
Enumerated and integer types 
Variable declaration with initial values 
Arrays and records 
Sequential, conditional and iterative control structures 
Subprograms (functions and procedures) 

Encapsulated definitions 
Parallel processing 
Generic Definition 
Exception handling 
Representation specification 
Interface to other languages 

The first group of features can be found, in some form or another, in many algorith- 
mic languages (most notably, Pascal).  These features will not be discussed further in 
this paper.  It is the second group of features that makes Ada an interesting language. 
We will discuss each of them briefly. 

ENCAPSULATED DEFINITIONS 

This language requirement provides a natural marriage of the software engineering 
principles of abstraction and information hiding.  Abstraction is the ability to deal with 
things in their real world (problem space) terminology.  "The essence of abstraction is to 
extract essential properties while ommitting inessential details."!^ We need to be able 
to deal with the functionality of the entity under consideration and defer (for the moment) 
any consideration of the underlying representation. Information hiding allows us to make 
inaccessible these detailed decisions of representation thereby forcing the user to rely 
on the abstractions provided. 

The Ada construct for implementing encapsulated definitions is known as the package. 
A package is a module that allows one to gather together a collection of logically related 
computational resources.  The package has a two part structure: the specification indicates 
what is available and the body indicates how it is actually accomplished.  The specifica- 
tion represents a contract with the user oT~the package.  In fact, the specification in- 
dicates all objects and operations which can be exported.  The user can make full use of 
the package by knowing only the specification.  The body contains information of interest 
only to the implementor of the resource.  In addition to the implementation details of 
the operations exported by the package, the body may contain other information which is 
hidden from all but the implementor.  Such information might include utility routines, 
state memory, file manipulation, etc. 

The package concept in Ada was greatly influenced by the concept of a class in SIMULA 
and the module in MODULA. 

PARALLEL PROCESSING 

Perhaps the epitome of information hiding is the fact that the Ada language "hides" 
the very existence of the operating system from the applications programmer.  Nowhere is 
this more apparent than with the Ada model of concurrent execution of communicating 
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sequential processes.  As far as the user is concerned, there is no reliance on the oper- 
ating system via system calls to effect concurrency.  The Ada tasking model allows the 
user to nicely model the natural concurrency present in many of the problems we are asked 
to solve.  This natural concurrency is especially present in mission-critical systems. 

The concurrency model of Ada is based, to a large degree, on the Communicating Seq- 
uential Processing (CSP) model of Professor C.A.R. Hoare of Oxford University.15  In Ada, 
a task is considered to be executing on its own dedicated virtual processor.  It doesn t 
matter whether the actual execution is on a multicomputer system, a true multiprocessing 
system or with interleaved execution on a single processor.  Further, tasks are assumed 
to commmicate with each other directly (not through an operating system).  It should be 
stated that the actual communication is most likely through operating system calls but 
that is part of the service provided by the run-time support package nested within the 
KAPSE. 

Communication takes place via entries. If task A wants to comm\inicate with task B, 
then task A must call an entry of task B.  This communication is assymetric.  That is, 
task A must know that it is calling task B but task B does not necessarily know that it 
is being called by task A.  Note that this is a departure from the CSP model.  In fact, 
each entry of each task has associated with it a queue and callers of the entry are placed 
into the queue in a first in first out order.  When task A calls task B and task B acknow- 
ledges the request (via an Ada "accept" statement) then A and B are said to be in 
rendezvous. 

In the simplest form of rendezvous, whichever task (caller or server) gets to the 
rendezvous point first goes into a sleeping wait.  When the other gets to the rendezvous 
point  the first wakes up and rendezvous occurs.  While this rendezvous is taking place, 
the two tasks are locked together (there is a single thread of execution).  Once rendez- 
vous is completed, the tasks are free to continue concurrently (there are multiple threads 
of execution). 

Some of the features available with the Ada tasking model: 

A servor task can select one of several of its entry queues to serve. 

A servor task can either go into a sleeping wait or perform some indivisible 
sequence of statements if all of its entry queues are empty. 

A servor task can serve any one of its entry queues if that queue becomes 
nonempty within a specified time.  If not, it can perform some alternative 
action. 

A servor task can choose to consider certain entry queues only if some 
particular condition (guard) is true. 

A servor task can offer to terminate if all of its queues are empty. 

A calling task can choose to wait only a specified time for service. 

A calling task can choose to rendezvous if and only if it can do so 
immediately. 

A task can be spawned off dynamically. 

A task can suspend itself for some finite period of time. 

Thus it can be seen that the Ada tasking model contains a very rich set of primitive 
operations for concurrency.  From this collection, monitors, semaphones, schedulers, etc. 
can easily be implemented. 

GENERIC DEFINITION 

Perhaps the best analogy for describing Ada's generic definition capability is that 
a generic unit in Ada is very similar to a macro in assembly language.  The Ada generic 
capability provides parameterization of subprograms and packages (there is no such thing 
as a generic task) with types, objects and subprograms. 

If we consider a subprogram, we see that it really represents a factorization of sim- 
ilar algorithms.  That which is consistent (the subprogram body) is factored out from that 
which differs (the subprogram parameters).  The resolution of actual/formal parameters 
occurs during run time.  Analogous to this is the factorization that occurs with generic 
units  That which is consistent (the generic body) is factored out from that which 
differs (the generic parameters).  However, the resolution of actual/formal parameters 
occurs prior to actual execution.  Further, only values and objects can be passed as 
actual parameters to a subprogram.  But, types and subprograms, m addition to values 
and obiects,  can be passed as actual parameters to generic units.  It is as it these 
actual parameters are used to construct a unit which uses the generic unit as a template. 
This construction is known as generic instantiation. 
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If we consider the abstract object known as a stack and the abstract operations of 
push and pop, we have a very powerful data structure.  Suppose we want a stack of integers 
and a stack of automobiles.  Clearly these two situations differ only in the data type of 
the components of the stack.  As in most languages, it is not possible to pass a data typ^e 
to a subprogram at run time.  This is clearly an opportunity for using generic units. The 
template for the generic package could be written in terms of some generic parameter (say 
ELEMENT_TYPE).  Then two specific instantiations could be given.  One where type INTEGER 
is systematically substituted for ELEMENT__TYPE and another where type AUTOMOBILE is sub- 
stituted for ELEMENT_TYPE at each occurence.  We would now have two stack packages just 
as if we had written them from the very beginning. 

It is envisioned that Ada's generic definition capability will be the cornerstone of 
an industry of off-the-shelf, reuseable software components. 

EXCEPTION HANDLING 

Ada provides the application programmer the opportxinity to "trap" exceptional condi- 
tions (like division by zero, exceeding array bounds, etc.) rather than have the operating 
systemdeal with them as is generally the case.  This provides yet another example of 
shielding the software developer from the operating system. 

Exceptions can be raised implicitly by the system when errors occur or explicitly by 
the programmer when an error condition is sensed.  Further, user-defined exceptions (such 
as STACK_OVERFLOW or CHANGE_3ARREL_iS_EMPTY) can be dealt with as well as system-defined 
exceptions (such as NUMERICJERROR, CONSTRAINT_ERROR, etc.)  Of course, user-defined errors 
can only be raised explicitly. 

Exceptions are handled relative to a frame of reference.  A frame of reference can be 
a block statement, subprogram body, task body or package body.  Each of these can contain 
a sequence of statements and, at the very end of the sequence of statements, an exception 
handler.  This handler contains statements which will be executed only if an exception is 
raised during execution of the sequence of statements of the frame of reference.  If there 
is no such handler, then the exception is propagated.  For example, if an exception is 
raised inside of a block statement then execution is abandoned and control is transfered 
to the exception handler.  If there is no exception handler then the exception is propa- 
gated by raising it again at the next sequential statement following the block statement. 
If the same situation arose inside of an active subprogram body, then the exception would 
be propagated by raising the same exception at the point of call of the subprogram. 

The Ada exception handling capability allows a very nice separation of steady_state 
logic from error checking logic.  In addition, the ability to raise and handle a DATA_ 
ERROR when erroneous data is input, allows the fairly straightforward input (and output) 
of enumerated values.  This is one of several shortcomings in the Pascal language which 
are eliminated in Ada. 

REPRESENTATION SPECIFICATION ' 

Transportable software has been one of the goals of the Ada movement since its incep- 
tion.  However there are often aspects of software, especially mission critical software, 
which rtm counter to transportability.  Often, because of external interfaces to peripheral 
hardware, or to provide more efficient representation of internal objects, it becomes nec- 
essary to make certain decisions to take advantage of certain capabilities of the host or 
target architecture.  This "bit-twiddling" is often decried as heinous but is sometimes 
necessary. 

wiLu Program atacus woras ana tne iiKe;, etc.  Also, if a given architecture will vector 
to a certain address upon receipt of a hardware interrupt, that actual address can be the 
location of a task entry point and can be indicated by a representation specification. 

It is important to realize that representation specifications are not currently part 
of the validation suite.  Therefore, an implementation is not required to include these 
specifications. 

INTERFACE TO OTHER LANGUAGES 

"A subprogram written in another language can be called from an Ada program provided 
that all communication is achieved via parameters and function results."1° 

There is a great amount of software which has been written, tested and, in some cases 
proven to be correct.  Throughout the Ada movement it has never been the intent that 
existing software be rewritten in Ada.  Therefore the language makes provision for calling 
subprograms which have actually been written in other languages. 

This capability is not required by an implementation (it is not part of the valida- 
tion suite testing).  Current experience shows that the most common language supported by 
this mechanism are FORTRAN and the assembly language associated with the underlvine 
architecture. ^ 
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EUROPEAN PARTICIPATION WITH ADA 

Although Ada was initiated by the U. S. Department of Defense, there seems to have 
been as much Ada activity in Europe as in the United States.  The language was developed 
by a primarily European team and interest in the language continues at a high level. The 
following is a sample of European Ada involvement:  All information has been gleaned from 
the Ada Information Clearing House.-'-'' 

During the summer of 1985, NATO issued a mandate requiring the use of Ada for all 
NATO-developed systems.  This mandate took effect 1 January 1986. 

Also during summer, 1985, an agreement was reached with the Ministry of Defense to 
establish a third validation facility (France and Germany having the first two) in Europe. 
The difference is that the UK will be able to issue its own validation certificates 
rather than have the certificates issued by the US. 

In March, 1985 it was announced that the Commission of European Communities (CEC) 
had contracted with Dansk Datamatik Center (DDC) and Consorzio per la Ricerca de le Appli- 
cazioni di Informatica (CRAI) to develop a draft formal definition of the standard Ameri- 
can National Standards Institute (ANSI) Ada.  In addition to the Danish and Italian 
principle organizations, the CEC will establish a review group from approximately 12 
countries in Europe, the U. S. and Canada. 

In January, 1985 Informatique Internationale, of France delivered a queuing network 
simulation program to the Spanish company CESELSA.  The program was written entirely in 
Ada and is appropriate for any queuing system including inventory management, ground and 
air traffic monitoring and production planning and manufacturing. 

In December, 1984, ALSYS, a French company headed by Jean Ichbiah (the principle 
developer of the Ada language) was awarded a validation certificate for its AlsyCOMP 0001 
version 1.0 Ada Compiler.  Host machines included the Vax 11/785, 11/780, 11/750, 11/730 
and the Micro Vax 1 with host operating system is the VMS version 4.0.  The target system 
is the ALTOS ACS 68000 under the ALTOS Operating System version 1. 

In July, 1984 the UK announced that the Ministry of Defense would require the use of 
Ada in real-time computer applications.  They stated "Confidence in the Ada language is 
now such that we can announce our intention to adopt it as a successor to CORAL for real- 
time defense applications."  In general, projects initiated prior to 1 July 1987 can 
choose Ada or CORAL but projects initiated after that date will use Ada. 

In November, 1984, The University of Karlruhe, under contract to the Ministry of De- 
fense of the Federal Republic of Germany was awarded validation certificates for two Ada 
compilers.  The first Ada compiler is the Siemens BS2000 version 840404.  Its host and 
target is the Siemens 7.571 under the BS2000 7.1 operating system.  The second compiler 
is the Vax 11 Version VI.0.  The host and target is the VAX 11/750 under VMS version 3.0. 

In October, 1984 Dansk Datamatik Center (DDC) was awarded a validation certificate 
for its DDC Ada Compiler VAX 11 Release 1.1.  The DDC Ada Compiler host and target machine 
is the VAX 11/750 tmder the VMS 3.5 operating system. 

York University is writing an Ada compiler for Vax systems under UNIX. 

In addition to the above activity, many of the finest textbooks on the Ada language 
have come from European authors. 

ADA EXPERIENCE 

The following represents findings from various organizations currently engaged in 
Ada activity.  No attempt has been made to validate the findings and no attempt has been 
made to find a common level of comparison among the findings.  Except where noted, all 
information is derived from an Ada Joint Program Office briefing.^" 

Bell Technical Operations of Tucson, Arizona developed a commercial application with 
over 103,000 lines of Ada code.  They feel that the judicious use of the Ada generic 
facility reduced the total lines of code by approximately 40%.1" 

MacDonnell-Douglass Aircraft Company of St. Louis, Missouri, developed a Computer- 
Based Training system which included almost 500,000 lines of Ada code.  They found that 
it was almost trivial to rehost this system from a Vax-11/780 to a Gould SEL and finally 
to a Pacific Micro 68020 based system.^0 

MacDonnell-Douglass also found, in their F-15 flight control experience, that they 
achieved a five-to-one productivity improvement over that realized with assembly language. 
Further, they experienced only a 10% cost in execution time and a 36% cost in memory. 

Northrop Aircraft Corporation of Hawthorne, California noticed a five-to-four reduc- 
tion in source lines from Jovial J73 to Ada. 

IBM's Federal Systems Division, using Ada as PDL on a major system for the Sattelite 
Control Facility reports the following findings: 

--30% improvement in programmer productivity 



2-7 

--15-20% problem reports/1000 lines 
--957c, success rate in initial problem fixes 
--Only 17o of fixes propagated new problems 

Digital Electronic Systems of Esthill Springs, Tennessee, working on various configu- 
ration control systems, reports productivity of 2,241 lines per man month and estimate 
that 957o of their software was successful after the initial compilation. 

Intellimac of Rockville, Maryland indicates 800-1200 lines per man month.  The 1200 
figure is reported also by Moog Corporation of Buffalo, New York. 

Raytheon Corporation of Mt. Laurel, New Jersey found that in transporting a system 
from a 6800 micro to a Vax, only 5 line changes per 12,500 Ada lines were required. 

It is clear that there is wide-spread support emerging for the Ada language. It is 
now time for serious research into the productivity claims in order to verify the numbers 
and to make estimates which range across experience base and application areas. 

CONCLUSION 

The Ada programming language is the result of a carefully considered design approach 
which was, at every juncture, submitted for public review by users, implementors and 
academicians alike.  It is quite likely that this language, with its support environment, 
will be a very helpful instrument for achieving transportability of software, tools and 
even people in the years to come.  Also, initial data seems to indicate that software 
developers can be more productive using the Ada language than they were using previous 
languages.  Finally, the use of Ada will in no way guarantee the generation of better 
software.  The undisciplined use of this language will likely result in software which 
is just as difficult to maintain as our existing efforts.  However, if good, modern princi- 
ples of software engineering are used in designing our sofware, the Ada language will en- 
force those decisions better than any other language to date.  Perhaps most importantly, 
almost everyone who has seriously tried the language, likes it. 
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SUMMARY 

This paper explores some of the possible uses and hmitations of Ada tasks within the context of real-time embedded computer apphcations. 
It also surveys the extent to which tasks and some other Ada features map naturally onto physically parallel computers. Some famiUarity 
with Ada, and in particular Ada tasks, is presumed, though the paper does review some aspects of Ada task semantics. 

1 INTRODUCTION 

One of the more distinctive features of the programming language Ada is its provision for defining multiple tasks. The Ada Standard 
says: "Tasks are entities whose executions proceed in parallel in the following sense. Each task can be considered to be executed by a 
logical processor of its own. Different tasks (different logical processors) proceed independently, except at points where they synchronize 
.. .Parallel tasks (parallel logical processors) may be implemented on multicomputers, multiprocessors, or with interleaved execution on 
a single physical processor. On the other hand, whenever an implementation can detect that the same effect can be guaranteed if parts 
of the actions of given task are executed by different physical processors acting in parallel, it may choose to execute them in this way; in 
such a case, several physical processors implement a single logical processor."  fll 

That is, tasks are logically parallel divisions of a program. Whether there is any physical paralleUsm in the execution of an Ada program 
is entirely independent of its division into tasks. 

In real-time embedded systems, both kinds of parallelism are of interest. Physical parallehsm is of interest because it can provide 
greater processing speed than sequential processing. Logical parallelism is of interest because it is a natural characteristic of real-time 
apphcations. 

2 PARALLELISM IN A REAL-TIME SYSTEM 

To illustrate logical parallehsm and the motivation for physical parallelism in a real-time apphcation, we consider an imaginary simple 
aircraft tracking system, shown in Figure 1. The inputs to this system are from a tracking (e.g. phased array) radar and an operator 
console; the outputs are to the radar and to a graphic display device viewed by the operator. In addition to using radar data to keep 
the information on the display up to date, the system maintains an internal table or "track file", showing the estimated current position 
of each tracked object, for use by the tracking system itseff and by other systems which it supports. 

radar •o-o software 

console a 
display U^ 

operator 

Figure 1: A simphfied aircraft tracking system. 

The tracking system software must meet the following requirements: 

• Each command going to the radar specifies a cell of space in which the radar is to look. The radar buffers a hmited number of 
commands bternally, and executes them in order of arrival. Determining whether the radar is ready for another command requires 
polhng the radar command port at least once every R seconds. 

• Reports from the radar arrive over a direct memory access (DMA) channel. The radar generates an interrupt whenever it fills its 
current report buffer. The tracking system must respond by giving the radar the location of a free buffer. This must be done promptly 
or data will be lost. Each report describes a set of objects sighted by the radar in a smgle cell. If a command results in no object 
bemg sighted, there is no report. If more than one object is sighted in a particular cell, the radar returns a report describing all the 
objects. 

'Ada is a registered trademark of the U.S. Department of Defense (AJPO). 
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• The positions of sJl tracked objects are to be updated in the track file at least one every T seconds, using fresh data from the radar, 
if possible. 

• The radar is to be used both to keep known objects in track, and to search for new objects, giving priority to keeping known objects 
in traick. 

• The graphic display is a DMA device, which periodically refreshes its screen from an image stored shared-access memory.  All the 
information in this area is to be updated at least once every D seconds, using current data from the track file. 

• The operator console generates an interrupt whenever the operator hits a key. Such interrupts are to be handled immediately.  As 
soon as a complete console command has been accumulated it is to be executed within C seconds. 

• The operator can add annotations to tracked objects and direct the searching to concentrate on areas of particuleir interest. 

The work which the application software must do to meet these requirements is most naturally viewed as a set of logically parallel 
activities, which must go on more or less asynchronously and at independent rates. (See Figure 2.) In Ada, these activities can be 
described as a collection of tasks, within a single program. We will discuss how such a system might be programmed in Ada, further on 

in this paper. 

Figure 2: System activities 

This example also presents a situation where a software designer may need to deal with physically pzirallel processing. In order to keep 
up with the radar, which we assume is capable of tracking many objects simultaneously, and to discriminate objects from noise, a great 
deal of computation will need to be done quickly. Suppose no single processor capable of doing all these computations quickly enough is 
available. The hardware designers therefore propose a configuration with several processors and several shared memory banks, such as 
that shown in Figure 3. 

A B C D 

r~ 1 1 1 1 1 1 
0       1 2 3 4 5 6 7 

Figure 3: A multiprocessor configuration. 

Although in 1985 no multiprocessor Ada compilers and runtime systems have yet been developed, it appears that such a collection of 
processors can be used to achieve physically peirallel execution of Ada tasks. We will consider how this might be done, after a quick 
review of Ada task semantics. 

3    TASKS IN ADA 

Ada'tasks are data objects. They follow the normal scope and lifetime rules of data objects. Like all data objects, each task has a type. 
All tasks of a type share the same executable code. Each task has its own storage to hold the values of data within it. Unlike other kinds 
of data objects, tasks are also executable program units. A task defines a level of static nesting. It may have local declarations, and code 
within it may access both local and nonlocjj declarations. Thus several tasks may share read and update access rights to variables, and 
allocation rights to a collection of objects designated by an access type. Tasks may be nested within recursive procedures and within 
other tasks. They also may have local exception handlers. 

When a task is created it is inactive. Later, it begins a period of execution, called "activation", during which it initializes local data. 
After its activation is complete, and possibly after some waiting to synchronize with other tasks, the task begins normal execution. 
During normal execution it may communicate with other tasks, by means of "rendezvous" zind shared variables. From time to time, 
execution of the task may be forced to wait for some event. Execution may continue indefinitely, or it may eventually complete. After 
completion, the task and its storage may still be referenced by other tasks. Finally, the task may "terminate", at which point its storage 
is no longer needed, and for sill nontrivial purposes the task may be considered to no longer exist. Figure 4, below, shows these principle 
state transitions of a task. 



4-3 

Figure 4: Important task state distinctions. 

Tasks are essentially asynchronous and nondeterministic. They may be created at arbitrary times, and go through their lives indepen- 
dently, except at a few points: 
(1) two tasks participating in a "rendezvous" are synchronized at the start and end of the rendezvous; 
(2) a task is synchronized with the task that created it at the start and end of its activation; 
(3) a task that has completed its execution is synchronized with every other task. 

A rendezvous takes place when one task calls an entry of another task, and the other task expresses readiness to accept a call on that 
entry, via an accept or selective wait statement. From the calling task's point of view, an entry call is syntactically and semantically like 
a procedure call (even with respect to details such as the propagation of exceptions raised and not handled during the call). As with 
a procedure call, the execution at the point of call is suspended until the call is complete. During the rendezvous, parameters may be 
passed between the two tasks. From the acceptor's point of view, however, the rendezvous is different. The acceptor cannot in general 
determine the identity of the calling task, and must accept calls on each entry in "first-in-first-out" (FIFO) order. 

Note that in order for a rendezvous to take place, the calling task must be able to name the task it calls. This means that the called task 
must be visible at the point of call, or must be named indirectly, via an access value. Because it is referenced in the call by name, the 
type of the called task is fixed at the time the entry call is compiled. In contrast, from the point of viev/ of the accepting task there is 
no restriction on tasks that may call one of its entries, other than that they be able to name the entry. This asymmetry must be taken 
into account when designing with tasks. For example, it means that a "server" task in general cannot "call back" those tasks which it 
serves, since it hcis no way of naming them. 

As an example of an Ada program with tasks, and rendezvous in particular, consider the following pair of producer-consumer tasks. 
PRODUCER calls CONSUMER'S entry TAKE whenever it has a datum to transmit, and CONSUMER accepts a call on TAKE whenever 
it is ready to receive a datum. Whichever one attempts to make the rendezvous first will wait until the other is ready. 

accept TAKE([ 

 OOhSLMm- 

procedure MAIN is . . . 
task PRODUCER; 

task CONSUMER is entry TAKE(X: in out T); end CONSUMER; 
task body PRODUCER is X: T; 
begin loop . . . CONSUMER.TAKE(X); 

end loop; 
end PRODUCER; 
task body CONSUMER is . . . 
begin loop accept TAKE(X: in out T) do; 

end TAKE; 

end loop; 
end CONSUMER; 

begin . . . 

end MAIN; 

- - Task PRODUCER created. 
- - Task CONSUMER created. 

- - Producer finishes activation. 
-- Calls entry TAKE of CONSUMER. 

CONSUMER finishes activation. 
- CONSUMER accepts entry call. 

- - Rendezvous is completed. 

- - Procedure body MAIN finishes elaboration. 
PRODUCER and CONSUMER start activation. 

- - Procedure MAIN completes execution. 

Figure 5: Producer and consumer tasks. 

Figure 6 illustrates how these three tasks might execute in parallel, given three separate processors. 
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Figure 6: Tasks executing in parallel. 

Operations that require synchronization of tasks, or mutual exclusion between tasks, such as allocation out of a shared pool of storage, 
are likely to be implemented by a collection of software provided with an Ada compiler, that must be coresident with compiled programs 
at run time. We call this collection of support software a "runtime environment". Other support services provided by the Ada runtime 
environment include maintenance of a real-time clock, task dispatching, and any aspects of storage management and exception handling 
that are not implemented directly by compiler-generated code. The runtime system may also be responsible for linking interrupts to 

handlers within the Ada program. 

The runtime environment is most efficiently hosted on a "bare" machine - that is, one without any other operating system. In this 
case all functions typically provided by an operating system or executive are provided either by the Ada runtime environment or by 
apphcation code (written in Ada). Because it need not support many of the more complex functions of a traditional operating system, 
such as providing a file system, an Ada runtime environment can be quite small. For example, in the FSU/AFATL implementation it 
occupies less than 8K bytes of memory. 

A real-time embedded systems builder is likely to be interested in details of an Ada implementation, and in particular the runtime 
environment, because they determine execution timing. Unfortunately, the details of interest will vary from one compiler to another. 
Even the division of duties between inline code (generated by the compiler) and the runtime environment may vary for one compiler, 
according to the level of optimization. Thus real-time programmers using Ada may need to learn to survive with less control than they 
are accustomed to exercising over things like execution timing and storage utiUzation. 

4    MAPPING ADA ONTO PARALLEL MACHINES 

There is considerable interest in using Ada to develop software for parallel hardware configurations. ParjJlehsm in computer hardware 
comes in a number of different forms. Among the various forms of parallel computer architectures are: 

• Pipelined scalar processors, which partially overlap the execution of successive instructions within a sequence. 

• "Vector" or "array" processors, which can rapidly perform a single operation on a sequence of data, using pipelined or fully parallel 

execution. 

• Multiprocessor configurations with shared memory, where each processor executes its own independent instruction sequence in parallel 
with the rest, but communication and synchronization are possible through a shared (arbitrated) memory. 

• Multiprocessor configurations without shared memory but linked by a communications network. 

Among these, the finer granularity of parallelism offered by pipehned and array processors distinguishes them sharply from multiprocessor 
configurations. Ada does not provide any standard means of expressing such fine-grained parallelism explicitly. Nevertheless, an 
optimizing compiler may be able to find opportunities for such paralleHsm within a program. That is, the code generator of a comnpiler 
targeted to a pipelined processor might be designed to take advantage of the pipehning. A compiler might also do loop-conversion and 
other vectorizing transformations similar to those currently done by "vectorizing" FORTRAN compilers. It is likely to be some time, 
however, before we see Ada compilers reach this level of sophistication, since in general the complexity of the Ada semantics make 
optimizations difficult. For the case of vector processors, there is an alternative to compiler-supplied optimizations. Explicit access to 
hardware parallelism can be provided through an implementation-defined package of vector operations. 

In contrast, coarser grained parallelism is explicitly representable in stanadard Ada - through tasks and through multiple programs. 
Physically parallel execution of tasks is likely to map more efficiently onto some hardware architectures than others, however. Because 
tasks must be able to share read and write access to common data, and because intertask communication requires rendezvous, the Ada 
task model seems best suited to architectures with high-bandwidth interprocessor communication and low-cost synchronization. 

For instance, it appears quite practical for several processors that share access to a common memory (such as those shown in Figure 3) 
to execute different tasks within a single program, in parallel. It also appears practical to distribute Ada tasks over a system of more 

loosely connected processors. The notion of rendezvous (i.e. remote procedure call) seems fairly well suited to the latter environment, 
and has been proven workable in network operating systems. Shared access to non-local data is still possible, using remote read and write 
operations. The main problem seems to be efficiency. Still, in 1985, no such multiprocessor implementations of Ada have yet appeared. 
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Unfortunately, for some architectures, such as closely coupled multiprocessor systems with very many processing elements, neither the 
task nor the program seems to be a suitable unit of granularity. It may be argued that Ada was not designed to support such architectures. 
If Ada programs are to be mapped onto such machines in such a way as to take full advantage of their power further research advances 
appear necessary. 

One direction such research is taking, exemplified by work done at Honeywell [2], is that parallehsm introduced solely for speed or 
redundancy should not be expressed directly in Ada. In this view the logical design of a program should be expressed in its simplest and 
most natural form, without regard to the hardware architecture on which the program will be executed. Details of how a program is 
mapped onto particular hardware should be expressed in a separate specification. While this approach appears very desirable from the 
point of view of maintaining independence of hardware and software, its feasibility remains to be demonstrated. 

Given today's compilers it seems most practical to view each processor as executing a separate program (or several). Such programs 
can communicate by means of common interfaces, implemented as shared library-packages. In addition to being immediately practical, 
this multiprogram approach has another advantage over the single-program model - it supports an "open" system architecture. UnUke 
communicating tasks, which must be compiled together within a single program, separate programs that communicate via common 
packages may be compiled and loaded independently. Moreover, communication linkages may be changed dynamically, during execution. 

5    SOME BASIC DESIGN CONSIDERATIONS 

Before returning to the radar tracking example, we examine some of the basic problems in designing real-time software with Ada tasks, 
and some useful techniques. 

5.1    SHARING A PROCESSOR 

When there is more than one task ready to be executed by a single physical processor the Ada language implementation must choose one 
of the tasks to be executed. We call this process of allocating processor time to tasks "dispatching". The Ada Standard leaves the details 
of dispatching to be determined by an implementation. This is good, because it gives the implementation freedom to make efficient use 
of the particular hardware resources that may be available - e.g., multiple processors. On the other hand, it is a problem for real-time 
system designers, who need to be able to predict system performance. 

A programmer can exert Umited control over dispatching by means of static priorities, which may be assigned to task types. Whenever 
several tasks are competing to be executed by the same processor, the processor must be allocated to one with highest priority. Additional 
control may be provided by associating entries of tasks with hardware interrupts, since while a task is handling an interrupt it has 
effectively higher priority than any task that is not handling an interrupt. 

An unpleasant consequence of Ada's leaving the detials of dispatching unspecified is that programs with multiple tasks are likely to 
depend on implementation features for their correctness. Consider, for example, the two tasks shown below. 

task URGENT is pragma PRIORITY(IOO); end URGENT; 
task LESS_URGENT is pragma PRIORITy(O); end LESS_URGENT; 
task body URGENT is 

''"Sin loop ■• • .. Do urgent work, 
delay 0.1; 

end loop; 
end URGENT; 
task body LESS-URGENT is 

?,' ' ' - - Do less urgent work, 
end loop; 

end LESS-URGENT; 

Figure 7: Controlling dispatching with priorities and the delay statement. 

Let us look at this example from a pessimistic point of view, assuming the Ada implementation is validated, but no more. Several things 
may go wrong: 
(1) The compiler may ignore the pragma PRIORITY. 
(2) Among tasks of equal priority, the runtime environment may give dispatching preference to the currently aiztive task. That is the 
dispatching policy may be "unfair". 
(3) The runtime environment may not notice that task URGENT's delay has expired, until it is invoked for some other reason. That is, 
the delay statement may be implemented in a non-preemptive manner. 
If (2) holds, and (1) or (3) also holds, task LESS_URGENT will "starve out" task URGENT. All of the above are permitted by the 
present validation tests (ACVC Version 1.6). 

It appears that (3) will be disallowed in the future. That is, while the Standard only requires that a task that executes a delay statement 
be suspended for "at least" the duration specified, there must be some Umit to how long it is suspended, and when the delayed task 

is released it should preempt a processor from any lower priority task. Still, the accuracy of the the delay is unpredictable and in an 
implementation seeking to minimize worst-case overhead it may become less accurate as the number of tasks increases. Finally, unless 
the delayed task has higher priority than every other task, it may wait an unpredictably long time before its execution resumes. 
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Some would argue further that a good implementation would not allow (2), but we do not agree. Switching a processor from one task 
to another unnecessarily is a waste of the processor's time. 

Designing £in Ada program involving tasks so that it is free of implementation-dependencies related to dispatching is not only difficult, 
it is probably EJSO unwise. A program that is totally implementation-independent is likely not to permit efficient use of multiprocessor 
hardware configurations. In particular, to make certain that a system of tasks can be executed on a single processor with an unfair 
dispatching pohcy it appears necessary to structure the program in such a way that for each task there is some time when all other 
tasks of higher or equal priority voluntarily wait, so that that task can be guaranteed to execute. For configurations with more than one 
processor this would mean that all but one of the processors would be idle much of the time. 

5.2    PROBLEMS WITH RENDEZVOUS 

The normal means of intertask synchronization and communication in Ada is by means of rendezvous. This presents two problems for a 
designer of real-time software systems: overhead and waiting. 

5.2.1 OVERHEAD 

The first problem is that rendezvous is a fairly complex, find therefore fairly costly operation. Because an entry call is similar in efect 
to a procedure call, we ran a simple test to compare the execution times of these two constructs, using our own (FSU/AFATL) Ada 
compiler - a single-processor implementation for the Z8002 microprocessor - and the test program in Figure 8. It has two tasks, one of 
which loops, repeatedly meiking a rendezvous with an entry of the other. In one second, 366 iterations were completed. In a comparison 
test, where the rendezvous was replaced by a procedure call, 957 iterations were completed. Replacing the procedure call by inline code 
resulted in a further increase, to 1081 iterations. Solving the three linear equations representing the running time of the loop, we find 
that it takes 15 times longer to perform a rendezvous service cycle (with no parameters) than to perform a similM procedure call and 
return. Even though the speed of rendezvous in the FSU implementation could be improved, so could the speed of procedure calls. 
Therefore this is probably a fair estimate of the overhead of rendezvous. 

In such a single-processor implementation, the £idditional cost of the rendezvous over the procedure call is largely due to making the one 
task wait for the other, determining when the dynamic conditions necessary for rendezvous have been met, and switching the context 
of execution between tasks. In a multiprocessor implementation (when such become available) there would be additional overhead, due 

to interprocessor communication. Though claims have been made [3] that compiler optimizations can dramatically reduce the average 
cost of rendezvous by recognizing special cases ("idioms"), the feasibiUty and practical benefits of such optimizations have yet to be 
demonstrated. 

procedure TIMER is . . . 
I: INTEGER— 0; 
task A is entry GO; end A; 
task B is entry GO; entry E; end B; 
procedure REPORT is begin put_hne(I); abort A,B; end REPORT; 
task body A is 
begin accept GO; 

loop B.E; - - This entry call is replaced by a procedure call or inline code. 
NOW:=CLOCK; D:=NOW-START; 
if D >= 1.0 then REPORT; end if; 

end loop; 
end A; 
task body B is 
begin accept GO; 

loop accept E do I:=I-(-l; end E; end loop; 
end B; 

begin START:=CLOCK; A.GO; B.GO; end TIMER; 

Figure 8: Program used to measure relative execution time of rendezvous. 

The overhead of rendezvous should be considered in the design of a software system. In particular, task interjictions should be designed 
so that the work done between rendezvous should counterbalance the cost of the rendezvous. For example, if a rendezvous takes 15 time 
longer than a procedure call, and the work done between rendezvous is at least equivalent to 300 procedure calls, the overhead of tasking 
due to rendezvous will be limited to 5 percent. 

5.2.2 WAITING 

The second problem with rendezvous is that one of the tasks always must be willing to wait. The limitations that this need for waiting 
imposes on task communication can be seen by reconsidering the producer-consumer example, discussed above. So long as either 
PRODUCER or CONSUMER can always afford to wait there is no problem, but in real-time applications this is not always the case. 
Suppose, for example, that PRODUCER is an interrupt-driven task, and CONSUMER is a periodic task, that must execute exactly once 
every T seconds, using any new information that PRODUCER has passed to it. Alternatively, suppose that PRODUCER is executing 
on one physical processor and CONSUMER is executing on another; if either task must wait, valuable processor time may be wasted. 
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To avoid or limit waiting, a task that wishes to make a rendezvous might use a conditional or timed entry call, or a selective wait with 
an else or delay clause. If the rendezvous is not begun within the specified delay the task is released and may go on with its execution. 
The task does not have to wait, but then neither does it accomplish the purpose of the rendezvous. For example, suppose that the task 
PRODUCER used a conditional entry call to pass data to the task CONSUMER, as shown in Figure 9. Because PRODUCER may need 
to produce more than one datum between successful rendezvous with CONSUMER, the two tasks now communicate through a buffer 
that can hold more than one datum. 

task body PRODUCER is 
BUFFER: array (...) of T; 

begin loop 

select CONSUMER.TAKE(BUFFER); 
else null; 
end select; 

end loop; 
end PRODUCER; 

Do some work; put datum into buffer if it fits. 

Figure 9: Using a conditional entry call to avoid waiting. 

There are several problems with this proposed solution: 

• CONSUMER must be willing to wait; otherwise there may never be any rendezvous. (This is the main problem.) 

• Executing the conditional entry call takes time, which is essentially wasted in the case that no rendezvous is made. 

• If the buffer ever fills up entirely, PRODUCER can do no more useful work. (This is unavoidable, if PRODUCER does not wait, but 
we hope the buffer is big enough.) 

• Since an Ada implementation is not required to do time slicing, if PRODUCER shares a processor with CONSUMER it may starve 
out CONSUMER. (This is really an independent problem, and does not arise at all if PRODUCER has a separate processor.) 

• CONSUMER must copy all the data from the buffer to a working area, so that it can release PRODUCER from the rendezous quickly. 
(This is also an independent problem, which is easily overcome using indirect buffers, as shown further below.) 

task body PRODUCER is 
BUFFER: array (...) of T; 

begin loop . . . 
select CONSUMER.TAKE(BUFFER); else delay 0.1; end select; 

end loop; 
end PRODUCER; 

Do some work; put datum into the buffer, if it fits. 

Figure 10: Using a timed entry call to limit waiting. 

A timed entry call could also be used, as in Figure 10 .   Here PRODUCER delays itself for 0.1 second if it cannot make the 
rendezvous. The chief advantage of this is that it may let other tasks on the same processor do some work. However, we have not gained 
much: 

• CONSUMER still must be wilUng to wait. 

• PRODUCER now also may need to wait (though if it has to wait very long it will wake up and do some other work). This solution 
would therefore be inappropriate if PRODUCER were interrupt-driven. 

• Still more execution time (due to scheduling the wakeup event for PRODUCER) will be spent in the case that the rendezvous cannot 
be made immediately. 

For each of the solutions above there is also a complementary solution, in which the aiccepting task limits its waiting time, using a 
selective wait statement with a delay alternative or else part. Though the roles of the two tasks are reversed, the limitations are the 
same. 

5.3    USING SHARED VARIABLES TO AVOID RENDEZVOUS 

It might seem that we would be better off if we could avoid rendezvous entirely. Sometimes this can be done safely by means of 
conventional buffering techniques, making use of shared variables and the pragma SHARED. Using the pragma SHARED we can specify 
that every read and update of a particular simple variable of a scalar or access type is effectively an atomic operation. Consider the 
example in Figures 11 - 13 , in which the producer and consumer communicate via indirect buffers, using shared access variables to 
communicate their current positions in a chain of shared buffers. 
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generic type DATA. TYPE is private; 
SIZE: in INTEGER; 

package QUEUE is 
- - Assumes eeich instantiation of this package is "owned" by a single writer task, 
- - so that the list of available buffers need not be synchronized. 
- - Each instantiation may be accessed by one reeider task. 
- - This reader task should only call ADVANCE and read MARK.all. 
type BUFFER; 
type BUFFER-ACCESS is access BUFFER; 
type BUFFER is record NEXT: BUFFER-ACCESS; DATA: DATA-TYPE; end record; 
HEAD, MARK, TAIL: BUFFER-ACCESS:= null; 
- - HEAD is accessed only by writer; it is used to collect used buffers. 
- - MARK is the buffer currrently begin read. It is read by writer Jind updated by reader. 

pragma SHARED(MARK); 
- - TAIL is the buffer currently being written-to. It is reeid by reader and updated by writer. 

pragma SHARED(TAIL); 
procedure READER-ADVANCE(OK: out BOOLEAN); 

- - Move MARK to next full buffer in chain, if any. Set OK=true iff MARK is advanced, 
procedure WRITER-ADVANCE; 

- - Add new (empty) buffer to tail of chain, pushing current tail 
- - buffer into range of full buffers, that reader may eu;cess. 

end QUEUE; 

Figure 11: The specification of a generic queue package, using shared Vciriables. 

package body QUEUE is 
AVAIL: BUFFER-ACCESS:= null; 
procedure READER-ADVANCE(OK: BOOLEAN) is 
begin if MARK = TAIL then OK:= false; else OK:=true; MARK:= MARK.NEXT; end if; 
end READER-ADVANCE; 
procedure WRITER-ADVANCE is 

Tl: BUFFER-ACCESS:= null; 
T2: BUFFER-ACCESS:= HEAD; 

begin while T2 /= MARK; loop Tl:= T2; T2:=T2.NEXT; end loop; 
if Tl = null 
then if AVAIL = null then Tl:= new BUFFER else Tl:= AVAIL; AVAIL:= AVAIL.NEXT; end if; 
elsif Tl /= HEAD then T1.NEXT:= AVAIL; AVAIL:= HEAD.NEXT; end if; 
HEAD:= T2; T1.NEXT:= null; TAIL.NEXT:= Tl; 

end WRITER-ADVANCE; 
begin for I in 1..SIZE-1 loop HEAD:= new BUFFER; HEAD.NEXT:=AVAIL; AVAIL:=HEAD; end loop; 

MARK:= new BUFFER; MARK.NEXT:= null; HEAD:= MARK; TAIL:= MARK; 
end QUEUE; 

Figure 12: The body of a generic queue package, using shared variables. 

package Q is new QUEUE(T, 4); 
task PRODUCER; 
task CONSUMER; 
task body CONSUMER is 

OK: BOOLEAN; 
begin loop Q.READER-ADVANCE(OK); 

if OK then consume(Q.MARK.all); else . . . end if; 
end loop; 

end CONSUMER; 

task body PRODUCER is 
OK: BOOLEAN; 

begin loop Q.WRITER-ADVANCE; produce_data_in(Q.MARK.all); end loop; 
end PRODUCER; 

Figure 13: Tasks communicating via a queue, implemented with shared variables. 
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Note that the package QUEUE keeps an explicit hst of available buffers rather than relying entirely on Ada allocators and Ada's predefined 
generic unchecked deallocation procedure. Note also that as many buffers as are expected to be needed are preallocated. This is to save 
time. The general-case storage allocation and deallocation operations supported by the Ada runtime environment are likely to be less 
efficient, because: (1) arbitrary-sized blocks of storage must be handled; (2) they must be treated as a critical sections, since several 
tasks may allocate concurrently from a single pool of storage. 

Avoiding rendezvous has solved our main problem. That is, neither PRODUCER nor CONSUMER need wait, and both can execute at 
the same time, if they execute on different physical processors. There remain other problems, such as avoiding starvation and dealing 
with buffer overflow, but these can be solved independently. 

5.4    USING A SERVER TASK 

It is unfortunate that the approach taken above does not generalize nicely to more complex task interactions, such as the producer- 
consumer problem with multiple producers and consumers. It seems that for such problems it may be best to protect shared buffers by 
interposing a server-task, which controls access to the buffers. Ghent tasks would then obtain or return buffers by rendezvous with the 

buffer-server, as shown in Figures 14-16. 

generic 
type DATA-TYPE is private; 
SIZE: in INTEGER:= 3; 

package CHANNEL is 
- - Bounded buffer capable of holding SIZE items, intended for multiple producers and multiple consumers. 
type BUFFER; 
type BUFFER-ACCESS is access BUFFER; 
type BUFFER is record NEXT: BUFFER-ACCESS; DATA: DATA-TYPE; end record; 
task SERVER is 

entry NEXT_IN(A: in out BUFFER-ACCESS); 
entry NEXT-OUT(A: in out BUFFER-ACCESS); 

end SERVER; 
end CHANNEL; 

Figure 14: The specification of a generic channel package, with a server task. 

package body CHANNEL is 
task body SERVER is 

HEAD, TAIL, AVAIL: BUFFER-ACCESS:= null; 
begin - - Set up hst of free buffers, 

for I in 1..SIZE 
loop HEAD:= new BUFFER; HEAD.NEXT:=AVAIL; AVAIL:= HEAD; end loop; 
HEAD:= null; 
- - Begin service, 
loop select accept NEXT-IN (A: in out BUFFER-ACCESS) do 

- - Add full buffer, if any, to FIFO, 
if A /= null then A.NEXT:= null; 

if TAIL= null then HEAD:= A; else TAIL.NEXT:= A; end if; 
TAIL:= A; 

end if; 
- - Get empty item-buffer. 
if AVAIL = null then A:=new BUFFER; 
else A:= AVAIL; AVAIL:= AVAIL.NEXT; end if; 

end NEXT_IN; 
or      accept NEXT-OUT(A: in out BUFFER-ACCESS) do 

- - Return empty item-buffer, if any. 
if A /= null then A.NEXT:= AVAIL; AVAIL:= A; end if; 
- - Get full item-buffer, if any available. 
if HEAD /= iiuU then A:=HEAD; HEAD:=HEAD.NEXT; end if; 

end NEXT-OUT; 
end select; 

end loop; 
end SERVER; 

end CHANNEL; 

Figure 15: The body of a generic channel package, with a server task. 
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I     NE>ajN( □ ); 
V : 

task type CONSUMER; 
task type PRODUCER; 
PRODUCER-1, PR0DUCER_2: PRODUCER; 
CONSUMER-1, CONSUMER-2: CONSUMER; 
package C is new CHANNEL(T, ACCESS_T, 4); 
task body CONSUMER is 

A: C.BUFFER-ACCESS— null; 
begin loop C.SERVER.NEXT-OUT(A); 

if A /= null then consume(A.DATA); else . . . end if; 
end loop; 

end CONSUMER; 

task body PRODUCER is 
A: C.BUFFER-ACCESS— null; 

begin loop C.SERVER.NEXT-IN(A); 
if A /= null then produce_data_in(A.DATA); else . . 

end loop; 
end PRODUCER; 

>4^ NEXT OUT "Re 1 NEXT IN   I -i~-        - 

-SERVER- 

end if; 

Figure 16: Tasks communicating via channel implemented by server task. 

The main problem with this solution is that each datum passed between the producer and the consumer requires not one, but TWO 
rendezvous. This will probably be time-consuming, but it appears that the only way one can hope to do better is by relying upon 
implementation-dependent features (e.g., a predefined task type SEMAPHORE, with entries P and V, or an optimization that recognizes 

certain special forms of tasks). 

Given the high cost (in waiting time and overhead) of intertask communication using rendezvous, it seems wise to design so as to keep 
the need for such communication to a minimum. 

5.5    CONTROLLING SCHEDULING 

Another one of the problems in using Ada tasks for real-time software is scheduling - that is, controlling the timing of task execution. 
Ada leaves many of the details of scheduling to the language implementation. It can be partially controlled, however, by means of delay 
statements and the real-time clock, and by means of timer-generated hardware interrupts linked to entries. 

In real-time systems scheduling is typically periodic. The Ada Standard gives the example shown in Figure 17 to illustrate how a delay 
statement may be used in conjunction with the real-time clock to achieve periodic execution. 

declare use CALENDAR; 
NEXT-TIME: TIME:= CLOCK -I- INTERVAL; 

begin loop delay NEXT-TIME - CLOCK; 
INTERVAL is a global constant. 

- - Do some work. 
NEXT-TIME:= NEXT-TIME -I- INTERVAL; 

end loop; 
end; 

Figure 17: Periodic scheduling with a delay statement. 

This will work, but is not likely to be suitable for sill applications. Some problems are: 

• The delay interval must be large in comparison to the time needed to check the real-time clock, calculate the delay, and execute the 
delay statement, or the overhead will be excessive. 

• The delay statement must be implemented preemptively, and the cycling task must have sufficiently high priority with respect to 
other tasks competing for the same processor(s) to insure that it can complete an iteration once in each interval. 

• The accuracy of timing is limited by the accuracy of the delay statement implementation (even though the variations will average 
out). 
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Where more accuracy or a smaller interval is necessary, periodic execution can be achieved by means of a timer-generated hardware 
interrupt, linked to an entry of a task. The example in Figure 18, adapted from MacLaren [4], illustrates how this technique can be used 
to program a standard cyclic executive in Ada. In this example, task EXEC calls the several procedures that perform the actual work 
of the system. EXEC divides time into "minor frames", whose length is the period D of the timer interrupt, and "major frames", whose 
length is 4D. Procedures INTF and CNTRL are called once every minor frame. Procedure EPROC is called once every 2D seconds, and 
procedures INTBl and INTB2 are called once every major frame. The latter are intended to be two parts of a single logical procedure, 
illustrating how computations that do not fit into a minor frame may be subdivided. 

task EXEC is 

' . ' - - indicates the start of a new minor frame 
for DING use at PERIODIC,INTERRUPT'ADDRESS; pragma PRIORITY(IO); - . a high priority 

end EXEC; 

task body EXEC is 
M: constant INTEGER:= 4; „.™K..   <•„•<■ • ■     r 
FRAME: INTEGER:=0; --number of mmor frames m a major frame 

begin loop accept DING; 
case FRAME is 
when 0 => INTF; INTBl; CNTRL; 
when 1 => INTF; EPROC; CNTRL; 
when 2 => INTF; INTB2; CNTRL; 
when 3 => INTF; EPROC; CNTRL; 
end case; 
FRAME:=(FRAME-H) mod M; 

end loop; 
end EXEC; 

Figure 18: A cyclic executive, implmented using a periodic interrupt entry. 

This approach should incur less overhead than using the delay statement, and may be more exact. If there is sufficient processor time 
left, it permits other (background) tasks to run, at lower priorities. There are also some hmitations, however: 

• Any other interrupt handlers must be kept sufficiently short and their interrupts sufficiently infrequent that the computations to be 
performed in each minor cycle can be completed, in the worst case. 

• All the work to be scheduled by the executive must be broken into procedures that can be executed within one minor frame. 

• A task that must respond to interrupts cannot wait for other tasks, which makes it difficult to pass information between interrupt- 
driven tasks and other tasks, as explained above. 

• This solution is based on a sequential, single-processor model of execution. (It can be generalized, however, using trivial entry calls 
rather than procedure calls, to work with a parallel model of execution.) 

• There is likely to be disagreement among compilers on details of the implementation of interrupt entries. For example: What happens 
when a task with an interrupt entry is itself interrupted? Does this depend on whether the task is executing an accept on an interrupt 
entry at the time? Also, what happens if the task responsible for handling an interrrupt is not waiting at an accept for the interrupt 

when the interrupt arrives? (In particular, what happens if the task EXEC above is still executing in the case statement when the 
next time interrupt arrives?) Can an interrupt-driven task rendezvous with other tasks? What happens if an interrupt occurs during 
such a rendezvous? 

5.6    STARTING UP AND SHUTTING DOWN 

Starting up a task and shutting it down are both time-consuming operations, and can involve subtle interactions with other tasks. 

Before a task can start up it must be created. This may be as a consequence of the elaboration of a task declaration, or elaboration of 
an object declaration or allocator for a task type or a composite type containing a task component. Elaboration typically involves the 
execution of code produced by the compiler, and is performed each time execution enters the scope of the declaration. This minimally 
involves allocating storage for the task, and initiahzing data structures used by the runtime environment to coordinate task execution. 

At some point after it is created, a task begins activation. This involves the elaboration of the declarative part of the task, including 
the initialization of local data objects, and the creation and activation of any local tasks. The time it takes to execute the elaboration 
code of a task thus depends on the complexity of its local declarations. Eventually, when a task has finished activation, execution of the 
sequence of statements of its body may begin. 

There are a number of fairly complex rules governing task activation. These rules help to prevent execution of a task before all of the 
data structures on which it depends have been initialized, and calls to an entry of a task that has not yet been created. Since there is 
still danger of such elaboration order errors, Ada programs also check for them at run-time. For example, consider the following pair of 
packages: 
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package P is tcisk type T; end P; 
package Q is Tl: T; end Q; ■ 
package body Q is . . . 

- - Task Tl is activated here, just before the "begin". 
- - ELABORATION_CHECK then raises PROGRAM-ERROR, because the body of T has not yet been elaborated, 

begin . . . end Q; 
package body P is 

... - - declarations used by task body T 

task body T is ... end T; 
endP; 

Figure 19: A problem with task body elaboration order. 

Task Tl is declared in package Q, whose body is elaborated before the body of T, Tl's task type. The elaboration of Q's body calls 
for Tl to be activated, and this raises the exception PROGRAM-ERROR. In this example, the error is obvious - the order of the two 
package bodies should be reversed - but problems with elaboration order are not always so obvious, nor so easily corrected. It is best to 

avoid this kind of problem by paying careful attention to activation order in the design of a system. 

Should there be need to start up a collection of tasks synchronously, after each completes its elaboration it can wait for a "go ahead" 
signal, except for one, which serves as starter. The starter can give the signal by calUng a designated entry of each other task, in a 
specified sequence. Such entry calls can also be used to "restart" tasks in response to some event, though this requires that the restartable 

tasks be designed so they are always willing to accept such a call. 

Execution of a task may continue indefinitely, or it may complete. Completion may be a result of: the task reaching the end of its 
sequence of statements; an exception that is raised and not handled within the task; the task being aborted; an orderly shutdown of a 

family of inactive tasks, using the "terminate alternative" of a selective wait statement. 

Some time after a task completes execution, it may be terminated. The distinction between completion and termination is similar to the 
distinction between activation and creation. As with activation, there are a number of fziirly complex rules governing termination. Their 
effect is to insure that a task continues to exist so long as there is another zictive task that may attempt to interact with it, and that all 
the data that a task may access must continue to exist so long as the task remains active. For example, in the following example, the 
procedure P is not permitted to return, because the task T never completes, even though P itself has no statements. 

procedure P is 
task T; 
task body T is begin loop null; end loop; end T;. 

begin null; end P; 

Figure 20: A master of tasks may not be exited until all dependent tasks have terminated. 

Because task creation, activation, and termination are fairly complex operations, they can contribute significantly to the execution time 
of a program. Moreover, if tasks are routinely created and destroyed during the normzJ operation of a system, the execution timing is 
hkely to be erratic. It is therefore preferable in the design of time-critical systems that all tasks be created and activated before the 
system becomes operational, during "warm-up" time. 

When one task in a collection of communicating tasks does die unexpectedly, perhaps due to an error, it may be preferable that the entire 
collection die and be recreated. This is hkely to be time-consuming, but ofiers the only chance of complete recovery. In the example 
given below, a watchdog task aborts em entire collection of tasks if an error is detected. The enclosing loop ensures that they will be 
restarted. 

loop declare 
task WATCHDOG; 
task body WATCHDOG is 

task A . . . ; task B ...;.. . 
begin loop ... 

if FAILURE-DETECTED then abort; end if; -" W 

end loop; 
exception when others => abort; '' ( ) 
end WATCHDOG; 
begin null; 
exception when others => null; " " (. J 
end; 

end loop; 

Figure 21: Restarting a collection of tasks. 
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Note that the execution of the task enclosing the outer loop cannot leave the block statement until all the tasks within have terminated. 
This will not happen until the watchdog dies. Note also that all the other tasks (including A, B) are made dependents of the watchdog 
so that when it aborts itself (1) it aborts all of them, without needing to know their names. Thus, even tasks designated by access types 
declared within the watchdog will be aborted. The inner exception handler (2) insures that all tasks will be aborted, whether the failure 
is detected directly, or through an exception being raised within the watchdog task. The outer exception handler (3) insures that the 
tsisks will be restarted even if an exception is raised during the activation of the watchdog. 

6    THE RADAR TRACKING EXAMPLE 

Let us now consider in more detail how we might implement a solution to the radar tracking problem outhned above, using Ada tasks. 
The work which the software must do can be divided as shown below. The information flow between these tasks is as shown in Figure 2. 

(1) task COMMAND-PROCESSOR; 
- - Respond to console interrupts, eiccumulate characters, and when a 
- - full command is accumulated, execute it within C seconds. 

(2) task DISPLAYER; 
- - Every D seconds, update the screen image, using current data from the track file. 

(3) task RADAR-DISPATCHER; 
- - Every R seconds, check the radar, and feed it another order, if necessary. 

(4) task RADAR-RECEIVER; 
- - Respond to interrupts from the radar when it has filled up a DMA 
- - buffer area, informing it of the next buffer area to use. 

(5) task BACKGROUND-SEARCHER; 
- - Continually generate radar orders to search for new objects. 

(4) task TRACKER; 
- - Every T seconds, update the track file, using new radar data, if possible. 
- - Attempt to obtain new radar data for each tracked object every T seconds. 

The partitioning above is based on the principle of initially not introducing any more task divisions than seem necessary to reflect the 
inherent asynchronisms of the problem. The CommEind Processor, the Radar Dispatcher, and the Radar Receiver are driven at different 
asynchronous rates by their respective data streams. The Displayer and the Tracker are also driven at different rates, according to the 
required timeliness of their outputs. The Background Seeircher needs to operate independently, so that it can use up otherwise unneeded 
radar and processor capacity. 

The tasks in our example all have the characteristic that they will only need to be created once, when the system is started up, and 
should not terminate during the normal operation of the system. They could all be declared in the declarative part of the main program 
or a library package referenced by the main program. 

6.1    THE COMMAND PROCESSOR 

The Command Processor must be able to respond quickly to operator keystrokes, so that no data is lost. At the same time, it must 
synchronize with other tasks, in order to execute operator conmiands. These two requirements are incompatible. We therefore introduce 
a new task, the Console Monitor, which will be responsible for responding to console interrupts, accumulating charzicters, and passing on 
complete commands to the Command Processor. There are several ways the Console Monitor and its communication with the Command 
Processor can be implemented, depending on the sophistication of the compiler. We wiU consider two ways. 

With a primitive compiler, hke the author's FSU/AFATL compiler, first-level interrupt handlers must be coded in assembly language. 
Such an interrupt handler, coded in assembly language, would in effect be the console-monitoring "task". It would buffer up to one full 
command, and then pass it on to the Command Processor via a "mailbox" - a dummy task control block which can be Unked to an 
interrupt entry queue and which simulates a an entry call. Since many such mailboxes can be linked to any entry queue, there is no need 
for the handler to wait, nor is there danger of lost commands. This interface is shown in Figure 22. 

task COMMAND-PROCESSOR is 
entry RECEIVE_COMMAND(C: in COMMAND); 

for RECEIVE-COMMAND use at CONSOLE-HANDLER'ADDRESS; 
end COMMAND-PROCESSOR; 

task body COMMAND-PROCESSOR is 
begin loop accept RECEIVE-COMMAND(C: in COMMAND) do 

• • • - - Save C; 
end RECEIVE-COMMAND; 

• ■ • - - Execute command C; 
end loop; 

end COMMAND-PROCESSOR; 

Figure 22: The Command Processor task. 
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Alternatively, the compiler may permit coding the first-level interrupt handler directly in Ada. For example, the ALS compiler, developed 
by Softech, Inc., provides special-case treatment of "fast interrupts", "trivial entries", and "trivial accepta"[5]. With such a compiler, 

the console-monitoring could be done by an Ada task, as illustrated in Figure 23. . This task uses a trivial entry to signal the Command 
Processor when it haws Eiccumulated a complete command. Trivial entry calls are guaranteed to be accepted without delay, but may 
not have parameters. For this reason, the commeind must be passed in a shared-variable buffer. Exchsmge-buffering should probably be 
used, but such details are omitted. 

task CONSOLE-MONITOR is 
pragma INTERRUPT-HANDLER-TASK; 
entry KEYSTROKE; 

for KEYSTROKE use at CONSOLE-INTERRUPT'ADDRESS; 
pragma FAST-INTERRUPT-ENTRY(KEYSTROKE, SIGNALLING-QUICK); 

end CONSOLE-MONITOR; 

task COMMAND-PROCESSOR is 
entry SIGNAL; pragma TRIVIAL-ENTRY (SIGNAL); 

end COMMAND-PROCESSOR; 

task body CONSOLE-MONITOR is 
begin loop accept KEYSTROKE do; . . . 

if . . . 
then . . . 

select COMMAND-PROCESSOR.SIGNAL; 
else null; 
end select; 

end if; 
end KEYSTROKE; 

end loop; 
end CONSOLE-MONITOR; 

- - Move character from input port to buffer; 
- - If the buffer contains a complete command 

- - exchange buffers 
Conditional entry call guarantees no waiting. 

task body COMMAND-PROCESSOR is 
begin loop accept SIGNAL; 

end loop; 
end COMMAND-PROCESSOR; 

A trivial accept statement. 
- - Process the cormnand; 

Figure 23: An alternate version of the Command Processor task. 

We still need to insure that a command is processed within C seconds. One way is to give the Commeuid Processor very high priority, so 
that it need never wait for any other task; then care must be taken in the programming of the Command Processor that the processing 
time for esich command is short enough not to interfere with the timely execution of other tasks. Other solutions require more detailed 
consideration of the other tasks within the system and the hardware configuration. We will consider some of these other approsiches for 
the Displayer, next. 

6.2    THE DISPLAYER 

The Displayer must update the display once every D seconds. We assume that D is fairly large (say one or two seconds), and that some 
variation in the period is allowable, so that we can schedule the execution of this task with a delay statement. There still may be a 
problem, though. Updating the display may take longer thjin we can afford to wait between execution of other tasks. One way to make 
sure that the Displayer does not prevent other tasks from executing is to put it on a separate processor. Otherwise, we could try giving 
it a fairly low priority, but then when the system overloads the Displayer may not execute at all. 

One idea is to set a deadline for the Displayer, and raise its priority when it nears the deadhne. Since Ada priorities are static, this would 
be impossible with a standard runtime environment. (Note, however, that an implementation conforming to the Standard may provide 
dynamic priorities, restricting the standard static priorities to a null range.) Nevertheless, the desired behaviour can be achieved, though 
awkwardly. The first step is to break the work done by the Displayer into small units, that we can afford to execute without switching 
tasks; that is, into the same kind of divisions required for a cyclic executive. 

Suppose we code these small units of work as cases within a single procedure, WORK, which looks at a global variable, NEXT-STAGE, 
to see how far work has progressed, and which stage it should execute at each call. Just before returning, procedure WORK increments 
NEXT-STAGE. Also, when it finishes updating the display, it resets NEXT-STAGE to zero, LAST-TIME to the time it finished 
updating the display, NEXT-TIME to the time it is due to start the next update, at low priority, and DEADLINE to a time after which 
updating the display must be given high priority. We encapsulate the code relating to the Displayer's logic in the following package: 



4-15 

package DISPLAYER is 
LAST-TIME, NEXT-TIME, DEADLINE: TIME; 

pragma SHARED(LAST-TIME); 
pragma SHARED(NEXT-TIME); 
pragma SHARED(DEADLINE); 

procedure WORK; 
end DISPLAYER; 

package body DISPLAYER is 
NEXT-STAGE: INTEGER:= 0; 
procedure WORK is ... ; 

begin . . . 
end DISPLAYER; 

- - Initialize LAST-TIME, NEXT-TIME, DEADLINE. 

Figure 24: The Displayer. 

Given this breakdown, there are several ways we can proceed. If we already have a cychc executive, we can intersperse calls to WORK 
within its schedule. Alternatively, we might create a new high-priority task, DISPLAY-EXEC, which alternates between executing 
WORK and delaying itself. This task can use the values of NEXT-STAGE, LAST-TIME, and the real-time clock to adjust the duration 
of its delay as the deadline for updating the display approaches. 

task DISPLAY-EXEC is 
pragma PRIORITY(lO); 

end DISPLAY-EXEC; 

task body DISPLAY-EXEC is 

begin loop delay(DISPLAY.NEXT-TIME - CLOCK); 
T:= DISPLAY.L AST-TIME; 
while DISPLAY.LAST-TIME = T loop 

DISPLAY.WORK; 
if CLOCK < DISPLAY.DEADLINE then delay 

end loop; 
end loop; 

end DISPLAY-EXEC; 

end if; 

Figure 25: The Displayer Executive. 

Of course, care must be taken that the units of work and the delay durations are sufficiently large that the overhead (of the delay 
statement, computing the duration, and the calls to procedure WORK) is tolerable. There is also a danger, present any time there are 
several tasks with delay statements, that several tasks will get in phase with one another. If this happens, the processing resources of 
the system will alternate between idleness and overload, with the the overloads possibly escalating until there is complete system failure. 

We can solve the problem of DISPLAY-EXEC delaying itself longer than necessary by means of another task of lower priority. Ideally, 
the lower priority task would execute until the deadhne is passed, making use of any slack time, then when the deadline passes the 
higher priority task would take over. A difficulty with this approach is ensuring that at most one of the two tasks is executing WORK 
at any one time. The obvious solution is rendezvous, if the execution time of one call to WORK is long enough to justify the cost of the 
rendezvous. Another difficulty is that if the deadhne passes while the lower priority task is executing WORK the higher priority task 
must wait for it to complete. This c£in be solved by letting the higher priority task do all the work, with the lower priority task merely 
serving as a gauge of system workload. 

task SLOW-EXEC is pragma PRIORITY(5); end SLOW-EXEC; 

task body DISPLAY-EXEC is 

if CLOCK < DISPLAY.DEADLINE 
then select accept PROD; or delay X; end select; end if; 

end DISPLAY-EXEC; 

task body SLOW-EXEC is 
begin loop DISPLAY-EXEC.PROD; 

end loop; 
end SLOW-EXEC; 

Figure 26: A two-level executive. 



4-16 

Note that we have been forced to reject another approach that seems good, but which Ada does not support. This would be to have the 
lower priority task do the work, but let the higher priority task give it a boost periodically, by calling it whenever the dezidline is passed. 
The body of the higher priority task might be structured as shown in Figure 27. 

task body BOOSTER is . . a very high priority task, 
begin loop delay(DISPLAYER.DEADLINE-CLOCK); 

if DISPLAY.LAST-TIME j DISPLAY.DEADLINE then DISPLAY.EXEC.BOOST; end if; 
end loop; 

end BOOSTER; 

Figure 27: An approach that will not work. 

The effective priority of DISPLAY-EXEC would be raised to that of BOOSTER while it is accepting a call from BOOSTER. The 

problem, of course, is that the priority is not boosted until the call is accepted, and the accepting task will not be able to reach an accept 
statement if its priority is too low to begin with. Alas, this exposes a fundamental inconsistency in the Ada semzintics of priorities. (For 
consistency, since the effective priority of a task can be raised by rendezvous with a higher priority task, we would expect that it should 
also be raised by the presence of a high-priority task on one of its entry queues, and that the order in which calls are accepted should be 
FIFO within priority classes, rather than strict FIFO, but this is not true.) 

A third approach might be to redesign WORK so that more than one call could execute concurrently, without conflict. This would 
require partitioning the data structures updated by WORK so that those accessed in different stages are disjoint. We consider this 
approach in more detail below, for the Tracker. 

Beneath all of these examples lurks an important truth: achieving satisfactory performance from a real-time system is likely to require 
"tuning" the task-level structure of the system. Several different task structures may need to be tried before one is found that is 
satisfactory. Moreover, subsequent "maintenance" may change timing characteristics of some components sufficiently that this tuning 
must be redone. 

If such task-level design changes are to be possible without extensive recoding, most of a system's code will need to be organized into 
procedures. For maximum scheduling flexibility, the procedures out of which tasks are built should be short enough to be executed 
without preemption (excluding preemptions to service hardware interrupts), yet long enough so that the overhead of a task-switch 
between calls is tolerable. 

6.3 THE RADAR DISPATCHER 

The Radar Dispatcher task poses problems similar to those of the console Command Processor, though the rate of data flow is much 
higher. We assume the radar is speedy, so that the period, R, with which it must be polled is too small to make use of a delay statement 
practical.   It will therefore be driven by a periodic interrupt.   On the other hand, it must be able to receive orders from both the 

Background Searcher and the Tracker. These tasks could pass the orders to the Radar Dispatcher via entry calls. However, if the 
overhead, of a delay is too high, then the overhead of an entry call probably is too high abo. A solution is to deUver the orders to 
the Radar Dispatcher in batches, so EIS to spread out the cost of the rendezvous. As with the console-monitoring task, we have the 
choice of implementing the radar poUing below the level of Ada, in assembly language, or using a fast-interrupt entry if the compiler 
supports it. The Radar Poller will take its orders from a buffer. For buffering we can use the circular buffering scheme given in the 
producer-consumer example above, which does not require rendezvous. However, this permits only one producer and one consumer. In 
this case there is only one consumer, the Radar Poller, but there are two producers. In order to accomodate them both, we interpose 
the Radar Dispatcher. The Background Searcher and the Tracker will send their orders to the Radar Dispatcher in batches, and the 
radar dispatcher will channel them to the Radar Poller. This arrangement not only solves the problem of multiple access, but gives us 
an opportunity to control the flow of orders, and perhaps to sort them. (For example, we may wish to give preference to orders from the 
Tracker.) It also Umits the scope of software changes if we decide to add or change radar units. We end up with the organization shown 
in Figures 28 and 29. 

6.4 THE RADAR RECEIVER 

The Radar Receiver is also interrupt-driven. Its main function is to channel reports to the Tracker. So long as there is only one Tracker 
task, there is no reason to bother with rendezvous; we can use a shared-vwiable buffer to pass data from the interrupt-handler to the 
Tracker directly. This is shown in Figure 30. 

6.5 THE BACKGROUND SEARCHER 

The job of the Beickground Searcher is to look for new objects, not already in track. It could be treated as a pure background task, 
executing at the lowest possible priority. Alternatively, we may wish to guarantee a certain minimum level of performance, even when 
the system is heavily loaded, tracking many objects. If so, we can treat this task similarly to the Displayer, breaking it into procedures 
of moderate length. This would have EUI advantage in flexibility. For example, we might wish the operator to be able to modify the 
effective priority of the search, as well as to direct its pattern. 

If the Background Searcher is implemented as a low priority task we might be able to afford aborting one version and starting up another. 
We might even create additionsil background search tasks, in response to operator conunands, so as to do concentrated searches in special 
regions. 
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task RADAR_POLLER is 

pragma INTERRUPT_HANDLER_TASK; 
entry DING; 

for DING use at PERIODIC-INTERRUPT'ADDRESS; 
pragma FAST-INTERRUPT_ENTRY(DING, SIMPLE_QUICK);end RADAR_POLLER; 

task RADAR_ DISPATCHER is 
entry PROD; pragma TRIVIAL_ENTRY(PROD); 
entry TRACKER_ORDER(B: in out COMMAND-BUFFER.ACCESS); 
entry BACKGROUND.ORDER(B: in out COMMAND_BUFFER_ACCESS); 
end RADAR-DISPATCHER; 

task body RADAR_POLLER is 
begin loop accept DING; 

if RADAR-IN.STATUS.READY and SOME-ORDERS-HERE 

*°^° • • • - - Take the next conmiand from the buffer and send it to the radar. 
end if; 

if FEW-ORDERS-HERE then RADAR-DISPATCHER.PROD; end if; 
end loop; 

end RADAR-ROLLER; 

Figure 28: The specifications of the Radar Dispatcher and Roller tasks. 

task body RADAR-DISPATCHER is 

begin loop select accept TRACKER-ORDER(B: in out COMMAND-BUFFER-ACCESS) do 

end TRACKER-ORDER; 
or    when FEW-ORDERS-TO_DISPATCH => 

- - Make the Background Search wait until the radar load is not too heavy, 
accept BACKGROUND-ORDER(B: in out COMMAND-BUFFER-ACCESS) do 

end BACKGROUND-ORDER; 
or    when SOME-ORDERS-TO_ DISPATCH => 

accept PROD; ... . . Transfer orders from Dispatcher buffer to PoUer's buffer, 
or       delay . . . ; 

■ ' ■ - - Check on the radar, to see if it is working, 
end select; 

end loop; 
end RADAR-DISPATCHER; 

Figure 29: The bodies of the Radar Dispatcher and Roller tasks. 

task RADAR-RECEIVER is 
pragma INTERRUPT-HANDLER-TASK; 
entry FRESH-DATA; 

for FRESH-DATA use RADAR-SIGNAL'ADDRESS; 
pragma FAST-INTERRUPT-ENTRY(FRESH_DATA,SIMPLE-QUICK); 

end RADAR-RECEIVER; 

task body RADAR-RECEIVER is ,. 
begin loop accept FRESH-DATA do 

end FRESH-DATA; 
end loop; 

end RADAR-RECEIVER; 

Tell radar where to put next batch of reports. 

Figure 30: The Radar Receiver task. 

6.6    THE TRACKER 

The Tracker incorporates most of the system's mtelligence. Without going into detaUs of the Tracker's algorithm, we see that its work 
divides naturally into two phases, one driven by the structure of the track file and the other driven by the order of the incoming radar 
reports. 
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First, because the estimated position of each tracked object is to be accurate within a tolerance of T seconds, the Tracker will need to 
update the position of all objects once every T seconds. It will update the position of each object using radar data, if any is available; 
otherwise, it will extrapolate the position of the object based on its previous position and estimated velocity. After several cycles without 
radar confirmation, the object will be considered lost, and deleted from the track file. (Special measures might be taken first to bring 
the object back into track, but we ignore these details here.) At the same time as it updates the position of an object, the Tracker can 
generate a radar order to obtain the data it will need to update the position of that object in the next cycle. All of this processing can 
be viewed as being performed for each object during a pass over the track file, one pass being made every T seconds. 

Second, the Tracker needs to correlate incoming radar information with items in the track file, based on spacial proximity. The track file 
may be organized so as to help in doing this efficiently. Since the radar reports will be coming in in arbitrary order, and may include 
reports of new objects, not yet in the treick file, the Tracker must set up a correspondence between radar reports and items in the track 
file before it can use the reports to update positions. This may be done during periodic passes though the recently-arrived radar reports, 
by sorting them out according to the orgeinization of the track file. There will be computations that need to be performed on a per-report 
basis, including coordinate conversion and interpretation of multiobject reports, that may also be performed during this phase. 

If there is only one processor, the Tracker can be organized as two phases within one task. For example, see Figure 31. 

task body TRACKER is 
begin loop START_TIME:= CLOCK; - - Phase I: (per-report) 

Swap_radar_report_ buffers; 
for I in l..LAST_REPORT_IN-BUFFER loop 

... - - process Ith report. 
end loop; 

- - Phase II: (per-track) 
for I in L.LAST-TRACK loop 
... - - process Ith track. 
end loop; 
COMPLETION_TIME:= CLOCK; 
delay T - (COMPLETION.TIME - START-TIME); 

end loop; 
end TRACKER; 

Figure 31: The Tracker task. 

If the radar is speedy and there are many objects to track, this is likely to be more work than a single processor could handle. The 
hardware solution is to use more processors. The software problem is how to use them. We will return to this problem after we have 
handled another - controlling access by the different tasks to the track file and radar reports. 

6.7    THE TRACK FILE 

The track file presents a problem of shared access, since it must be read by the Displayer and both read and updated by the Tracker and 
the Command Processor. In addition, other software (e.g. a colUsion-detector) may need to rejid from it. Thus, some mesins of mutual 
exclusion must be provided. 

Since several different tasks will need to access the track file, and because we may want to add more tasks later, we are forced to view 

it as a client-server problem, where the tasks accessing the track file do so by obtaining permission from a Track File Server task. In 
order that client teisks do not have to make rendezvous with this server too often, it should allocate access in fairly large blocks. Since 
we CEinnot afford time to copy such large blocks of data frequently, the server must provide access to data either through access values 
(pointers) or through assigned index ranges in a shared array. To make such large blocks of data useful, we may partition the data in 
the track file into blocks representing different contiguous sectors of the physical space in which objects are to be tracked. 

Since we cannot yet predict the order in which all the tasks will need to access this data, we must consider the possibilities of deadlock 
and starvation. To lessen this danger, we will prohibit in-place updating of data. That is, a task such as the Displayer, that requests 
read-only access to a sector of the track file will receive access to the most recent version of that sector in the database. A task, such 
cis the Tracker, that updates the track file must do so by requesting read-access to the database, and permission to update. The server 
grants read-only access to the current copy of the sector, and update access to an available block of memory, which will become the new 
version of that sector when returned to the database. Thus, simultaneously one task may be updating and several tasks may be reading 
from the same sector of the track file, but no more thcin one may update at the same time. Time stamps are applied to the sectors of 
the track file, since the versions of the different sectors are not synchronized. 

We thus have the organization shown in Figure 32. 
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task TRACK-FILE-SERVER is 

entry REQUEST_READ(SECTOR-INDEX)(S: out SECTOR-ACCESS); 
entry RELEASE-READ(A: in SECTOR-ACCESS); 
entry START_UPDATE(SECTOR-INDEX)(S: out SECTOR-ACCESS)- 
entry FINISH_UPDATE(SECTOR-INDEX); 

end TRACK-FILE-SERVER; 

task type TRACKER; 
task body TRACKER is 
begin loop ... „, 

TRACK-FILE_SERVER.START-UPDATE(I)(S); "" " '"""'°'' ^' *° "P'^"''' 

TRACK_FILE-SERVER.FINISH-UPDATE(I); " " ^"^°™ "P*^^'' °^ ^'^^ 
end loop; 

end TRACKER; 

Figure 32: The IVack-file Server task. 

6.8 BUFFERING RADAR REPORTS 

We have a similar, but less extreme, problem with the storage of radar reports between the time they are received and the time they 
are processed by the Tracker. In order that the track file can be updated a sector at a time, we want the Radar Receiver to sort the 
incoming radar reports into different "bins" according to sector. The Tracker wiU thus simultaneously need read access to a bin of radar 
reports and update access to the corresponding sector of the track file. Anticipating deadlock problems if we later divide the Tracker into 
several tasks executed on different processors, we plan to make the allocation of report bins between Tracker processes implicit, through 
the allocation of update rights to track-file segments. 

We still have the problem of providing write-access for the Radar Receiver to the report bins. When the Tracker requests update access 
to a sector, we want it to take all the most up-to-date radar reports for that sector. On the other hand, we do not want the Tracker to 
rendezvous with the Radar Receiver for each incoming radar report, because the overhead would be excessive. 

One solution is to used shared variables for mutual exclusion, representing each bin as a linked chain of buffers. In particular, suppose 
we use the generic package QUEUE, defined above, with one instantiation per sector of the track file. A troublesome detail is that Ada 
only permits us to specify the pragma SHARED for simple variables - not for components of an array or record. This forces us to treat 
each queue as a package (rather than as a record, which would have allowed the bins to be represented as an array of queues, indexed 
by sector identifier). Instead, the reader and writer will have to use case statements to select the bin for a given sector. 

6.9 USING PHYSICAL PARALLELISM 

Suppose the radar tracking system is to be implemented on a multiprocessor configuration, like that shown in Figure 3, above. Using 
present-day compilers, the best solution would be to write a separate Ada program for each processor, using conventional locking 
techniques (e.g. test-and-set) to protect shared data. 

At some time in the future it is Ukely that there wUl be Ada compilers that are capable of distributing a single program over such 
an architecture. Though radical approaches have been proposed[2], a simple and relatively easy first step toward a multiprocessor 
implementation seems to be compUing a single Ada program for a single virtual memory address space, with shared access by a coUection 
of processors. Virtually no change is required from a compiler for a single processor. Some changes would need to be made in the runtime 
support software, but they would not need to be major. Each processor would perform its own dispatching, working from a common 
queue of ready tasks. No special pragmas or language extensions would be necessary, since the allocation of processors to tasks could be 
completely dynamic. Pragmas could be provided, however, to insure that certain processors are reserved for critical tasks. 

Let us assume that such a multiprocessor compiler is available, and consider how the tasks of our tracking system might be distributed 
over the processors in Figure 3. We might assign the Console Monitor and Command Processor tasks to Processor C, and the radar 
interface tasks to Processor D, leaving Processors A and B, and any slack time on processors C and D, avaUable for the TVacker and 
Background Search. 

Since the Tracker task seems to be the most demanding of processor time, it would be helpful to split its work between Processors A 
and B. Without givmg up the twophase structure, we can separate Phases I and II, so that they execute as a pipeline. While Processor 
B IS domg Phase II, updatmg the track file. Processor A can do the Phase I processing for a collection of radar reports that will be used 
by Processor B the next time it updates the track file. This is not an ideal solution, however. One problem is that the excess time of 
Processors C and D is not used, except perhaps for the Background Search. Another problem is that the pass-oriented structure is likely 
to put an uneven demand on the radar, resulting in a need for long queues. Finally, radar data received immediately after the start of 
an update pass cannot be used until the next pass, by which time is is "stale". 

Alternatively, we might split the TVacker "vertically", instead of "horizontally". We could create several objects of task type TVacker so 
that one Tracker could be updating one sector of the track file on Processor A while the other is updating another sector on Processor B. 
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To obtain maximum speed from parallel processors, data shsired between different processors should be divided between different memory 
modules, so that processors do not wsiste time contending for memory access. Thus, for exeimple, the even numbered track file sectors 
and their corresponding report bins might be a.ssigned to Memory 0, and the odd ones to Memory 1. A copy of the Tracker code might 
be resident in each of Memories 2 and 3. We might have two Tracker tasks, one with its workspjice assigned to Memory 0 and the other 
with its workspace asigned to Memory 1. The code for the Console and Bjickground Search Tasks could go into Memory 4, and their 
workspjices into Memory 5. Memories 6 and 7 would be used for the Radar tasks. 

Of course, this solution is still not very good, since it is Ukely that most of the tracking activity may be concentrated in one sector. This 
suggests that a more subtle approach may be needed if we were to design a real tracking system. 

Note that we have ignored one seemingly elegant approach - using one TVacker task per tracked object. This was considered and rejected, 
because of several problems, including especially: 
(1) heavy execution time overhead, due to extra rendezvous and individual dispatching of objects; 
(2) storage overhezid, due to extra teisk control information. 

7    CONCLUSIONS 

We have described some of the features of Ada that support programming with tasks, and considered some of the ways they might be 
used in real-time embedded software systems. There are still many interesting features which we have not covered, however. These 
include: 

• interactions storage management, including the STORAGE-SIZE clause for task types; 

• interactions with exception handling, including exceptions raised by task operations, propagation of exceptions between tasks, 2uad 
response of tasks to exceptions; 

• entry famiUes (i.e., "arrays" of entries); 

• aborting a task; 

• details of activation; 

• details of completion and termination, including the terminate alternative; 

• the severed forms of selective wait statement; 

• peculiarities of main programs and of tasks declared in library packages; 

• attributes 'CALLABLE, 'TERMINATED, and 'COUNT. 

The full definition of the semantics of Ada tasks is in [l], and a discussion of some implementation techniques is given in [6]. 

Though Ada may not be idejilly suited for rejJ-time software, especially from the point of view of obtaining maximum performance from 
parallel hzirdware architectures, it can be made to work. Moreover, because Ada does provide linguistic means for describing concurrency, 
it is a vast improvement over languages that do not. 

In order to support the development of good rezd-time systems, compilers and runtime environments will need to provide more than the 
minimal features required by the Ada Standard. At the same time, to permit efficient mapping onto hardware, they may need to impose 
limitations on the use of some standeird leinguage features. (A good example is fast interrupt entries.) So long as dependencies on such 
implementation features are explicit, and isolated to a small number of code modules, the benefits will outweigh the costs. Indeed, with 
real-time systems some implementation-dependent programming seems unavoidable. 

We do beUeve, however, that there is serious cause for concern about the complexity of Ada compilers, and the effect that this is hkely 
to have on their reUability. This complexity appears hkely to be aggravated by optimizations that implement a single language construct 
in different ways, depending on context. This author hopes that the Department of Defense may eventuzilly recognize the wisdom of 
designating a restricted subset of Ada, which can be implemented efficiently without need for such special-casing. 

Finally, as a positive step toward using Ada to develop real-time systems that czm be flexibly tuned to meet timing constraints and fitted 
to peculiar hardware configurations, we would like to suggest an approach to structuring Ada programs. This is based on an adaption 
of a proven methodology [7], which recognizes three kinds of components - (1) procedural components, (2) informational components, 
and (3) structural components. 

Procedursd components do the "work" of the system, by transforming data. These can be reaUzed by Ada procedures and functions. 
IdetJly, the primary (top level) procedural components should have the following properties: 

1. They should be short enough that they can be executed to completion without causing scheduhng problems, but long enough that 
making a rendezvous or otherwise switching a processor from one task to another between them would not incur disproportionate 
overhead. 

2. They should access data only through exphcit parameters. 

3. They should not depend in any way on the order in which they are called, how they may be czdled by different tasks, or what processor 
happens to execute them. 

Informational components hold data between transformations. These can be realized by Ada pEickages containing (mainly) object 
declzirations. Ideally, these should be partitioned in such a way as to avoid need for synchronization between concurrent operations. 
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Organizational components describe which transformations should be applied to which data, in what order, and at what times. These 
can be realized by combinations of of Ada tasks. They should be designed to take into account the actual hardware resources and costs 
of intertask communication. They are likely to need to be reorganized to tune the entire system's performance. 

In addition, for Ada we would add two more kinds of components, to take advantage of Ada's strengths in the area of abstraction, 
extendability, and reusability - (4) data-type modules and (5) communication modules. Data-type modules consist of packages containing 
declarations of data types and operations on those types whose usefulness goes beyond one particular program (i.e. subprograms at a 
lower level than primary procedural components, and that have the character of language extensions). Communication modules provide 
abstract communication interfaces for tasks or main programs, hiding lower-level protocols and in-some cases even the identities of the 
communicating entitites. (For example, consider MASCOT channels and pools.) Both kinds of modules should typically be suitable for 
expression as generic packages. 
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ABSTRACT 

The design of the language Ada® was undertaken In an effort lo reduce the cost of software. One of the overriding 

factors to achieve such a benefit is the possibility to reuse program components among different projects, 

leading to a true software con:^>onent industry. The various aspects of Ada that relate to this notion are 
discussed, and in particular the relevaiKc of packages, separate compilation, generic units, abstraction and 
portability.  Matters relating to   the production,  distribution  and  use  of software components are  also discussed. 

1. INTRODUCTION 

The development of Ada had as its primary objective a reduction of soaring software costs. Such a reduction could be obtained 
through a combination of various factors: 

• a strongly-typed, high-level language allowing numerous errors to be detected by the compiler; 

• a unique language, usable for all mission-critical computer applications, that would reduce development costs 
(no duplication of tools and environments) and training costs (programmers using the same language from one pro- 
ject to the other); 

• a language that woud  support the development of systems by building up on existing software. 

This latter aspect is probably the most prominent one, because its benefits can be easily quantified. 

In the past, software reuse has been hindered by the fact that it was quite difficult to isolate program parts that could be reused in the 
context of another project (a noticeable exception is the notion of libraries of subprograms, such as scientific or graphic libraries; 
however, such libraries generally offer only very basic components). 

We will see how Ada addresses the issue of software reuse tlirough various language features that not only support tlie reuse of 
software components, but also promotes the development of software so as to isolate reusable components. 

The paper first attempts to give a characterization of what constitutes a good component; it then discusses tlie economics of 
reusable software, and the general problems involved. It then reviews the various features of Ada that are relevant to the 
development and use of software components. Lastly, it presents an investigation of the methodological implications of reus- 
able components, i.e., how to design systems that use components, and how to construct systems so that part of them can be turned 
into reusable components. 

2. CHARACTERIZATION OF REUSABLE SOFIWARE 

The central notion of reusable software is the reuse of a complete software system, or parts of it, in a different context than the one 
it was originally developed for. 

Without this latter qualification, we are confronted with a much more conventional problem that of portable software. We will see 
that portability is an important property of reusable software but it is not the only one. 

Although the reuse of complete programs is not uncommon, e.g., in the context of software development environments where primitive 
software tools are often composed to make more complex tools, it is rarely the case that complete embedded computer programs 
can be reused in a different context. 

Embedded systems tend to be rather complex and specific. Yet they still contain many opportunities to reuse software that has 
been previously developed in a different context.  Some examples are given below: 

a/ Track Processing in Radar Systems 
In a radar system, echos must be processed to recognize consecutive echos of the same object, and to record various 
data associated to a track, (speed, coordinates, etc.). These functions are likely to have much in common between a 
ground air-traffic control system and an aiibome missile firing system. 

b/ Real-Time Scheduling 
In a large category of process control systems, the real time scheduling of various activities relies on a small set of pos- 
sibilities, e.g., run an activity at such time, or every so often, or conditional to the occurrence of a certain event. That 
part  of  the   system  which does the scheduling could  be reused   in   other systems,   provided   it   is   made   sufficiently 

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office) 
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independent of the  activities  that have  to be  scheduled. 

Reusable   software   components   must possess certain   desirable characteristics: 

• simple, clear and clean interfaces: the users of a component must understand witliout difficulty how to use it 
properly; 

• portability: the component is likely to be distributed on a variety of machines; 

• reliability: one of the major advantages of reusing software components is that these have already been fully unit- 
tested; 

• adaptability: a software component should be able to operate properly in a variety of similar situation; it should 
be insensitive to things like table sizes, data representation, etc.. 

3. THE ECONOMICS OF REUSABLE SOFTWARE 

Reusing existing software components has a number of economic appeals. There is an obvious benefit in not developing, cod- 
ing and testing something from scratch.   However, this benefit must be weighed against potential problems: 

• cost of acquiring the software 

• cost of choosing the software 

• cost of adapting to the software 

• cost of adapting the software. 

Other aspects must also be examined: 

• impact of software reuse on traditional development methods 

• maintenance problems 

• distribution aspects. 

There are two possible situations leading to an effective use of software components; on the one hand, there is the situation of large 
software developers, running several projects, and who can develop their own libraries of software component, which can grow by 
building up on previous project; on the other hand, there is the general (yet to be developed) market for software components, 
where a user can purchase a given component from a vendor.   This latter situation is ultimately of primary interest: 

• it can lead to improved returns  on  investment by allowing a developer to sell more copies of (part oQ its software; 

• it enables a reduction in software costs, tlie cost of purchasing a component being presumably less tlian that 
of making it; 

• it can contribute to a better reliability of software, reused components having been tested by many more users. Some of 
the problems are specific to one situation or the other. 

3.1. Apparent and Hidden costs 

One of the most obvious costs is the purchase price if the component has to be acquired. However, the use of a foreign com- 
ponent in a software project may cause a variety of problems: 

• instead of designing a software component, one has to choose the appropriate one. This means that Uie exact needs 
must be known, and that the choice must be made carefully. In particular, since it is often not possible to 
modify  a component after it has been installed, an inappropriate choice may have drastic consequences. 

• Another potential cost is the time spent to understand the specifications of various components before making 
a selection. This may also require that components have to be evaluated and tested before they are acquired. 

• In most cases, the component will not provide exactly the features that the user would have wished. This does not 
mean that the choice was inappropriate, but it merely reflects the fact that it often costs substantially less to use some- 
thing imperfect than to try and develop something perfect. Nevertheless, one of the consequences is that the 
system design will have to be bent to be compatible with the component. The degree to which the design must 
be modified is an important cost factor. 

• In other cases, the system design may be an overriding constraint and one may be tempted to alter the 
specification of the component.  First it is not always possible to do  this (one may not even have the source available), 

' and second,  one must be aware of all the implications, especially in terms  of testing the component again.  In  general, 
it  is feasible to modify a component if it has been developed in house, so  that all the documentation is available, as 
well as the test data. 
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3.2. The Distribution and Maintenance Aspects 

In the case where a software component has been acquired from a vendor, a number of problems may arise when this component 
has been incorporated in a system which is itself distributed to users: 

• can binary versions of the component be distributed freely if they are incorporated in a more complex system, or 
will royalties have to be paid to the authors? 

• Is the component maintained?  What warranty is provided? What support is available? 

• In certain cases, customers of a complete system will request the sources of all software. In these cases, the source of 
a component must also be available, at a reasonable cost. 

33. Adaptation Costs 

"Thinking reuse" is not necessarily a natural transition, in spite of the potential advantages. In addition to an evolution of the 
mentalities, the development methods may have to be modified. We discuss later some of the methodological aspects of 
software components. It must be borne in mind that the introduction of such modifications may introduce new costs; also, the 
isolation of potentially reusable components may be encouraged but this may also introduce extra costs, in the fonn of specific 
component oriented reviews and requests for modifications that have no immediate use in the original project but will contribute in 
making the component easier to reuse. 

4. DISTRIBUTION ASPECTS 

In view of the various contexts for use of software components, one can envision various possibilities for the distribution of 
components. We consider here only the case of an independent component vendor, interested in selling software for profit (or 
for glory). There are two basic approaches: a conventional, protective approach, where only binary versions of the com- 
ponents are distributed, and a more open kind of relationship where the customer has access to the source. 

4.1. Binary Distribution 

Selling packages only in a binary fonn has the advantage of protecting the author's investment against unauthorized copies. 
For this reason, it also allows the vendor to quote a lower price and reach an adequate return due to a higher number of 
sales. 

However, these considerations are essentially borrowed from tlie micro-computer market. Their appropriateness in the context 
of professional software components does not immediately follow: 

• the potential market base is much narrower; 

• potential customers are also professionals with a specific need: the cost of purchasing a general purpose component 
can be balanced against the  cost of developing a  much  more restricted version for their own use; 

• the risk of piracy in  industrial organizations is probably substantially lower than in the general public; 

• there are numerous technical problems in distributing binary versions of a component (described below) that make it 
much less  likely that someone will want to  make unauthorized duplications. 

llie technical difficulties have to do with the fact that what has to be distributed is not an object module, but something that has to be 
incorporated in the user compilation libraries, in particular all the intennediate tables needed by a compiler must be provided. This 
means: 

• that the distributor must have access to all Ada compilers on the market; 

• that the maintenance must be able to follow changes in the compilers; 

• that not giving the source may be an impossible goal because the compiler may need an intermediate representation 
that can be "decompiled" to reproduce the source. One possible solution would be to use special protection 
modes on the tables, e.g. "execute" protection could mean that a table can be used by a compiler but not copied 
or decompiled. Ihis obviously requires that the compiler itself is made to check such accesses. Also some compilere 
may not require the tables for the unit bodies. 

The conclusion is that binary distribution is probably inappropriate for a general component distribution. 

4.2. Source Distribution 

Most of the problems  raised previously  disappear if the vendor is willing to licence the source of the components. 

This approach is reassuring to Uie users who know that they can adapt the code if the need arises, or have the code available if man- 
dated by a contract. 

On the other hand, such a distribution is very difficult to combine with an appropriate maintenance and support if users modify the 
cede. This is often a sufficient deterrent to prevent loo many users from modifying the code. 

It is also possible to have two  levels  of source distribution: one which is the full source code with documentation comments, etc., 
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and a second level where the source that is released uses only cryptic identifiers (e.g. X00178) and no comment at all. This second 
level although by no means foolpnx)f, can often be sufficient to ensure that most customers will not invest the time to "borrow" 
proprietary methods and algorithms from the author. 

One could go even further and use a "code scrambler", i.e., a tool that transforms a well-structured program into an equivalent 
rather unstructured one: 

Example: 

— This is a conventional binary search algorithm that searches 
— through a linear table for a string that matches the one given 
— in STR.  The  variable NEXT indicates the index of the next 
— element to be tested; it also  indicates the selected item at 
— the end of the search. If the item is not found in the table, 
— the exception XNOTFOUND is raised. 

Low  := Table'FlRST; - LOW and HIGH are respectively 
High := Table'LAST; —the floor and ceiling markers 

— used in the algorithm. 
Next := (Low + High); 

loop 
case string_comp (Table(Next), Str) is 

when '<' => 
if Next = Table'FlRST then 

raise XNOTFOUND; 
else 

High := Next - 1; 
end If; 

when '=' => 
exit;        — the item has been found! 

when '>' => 
If Next = Table'LAST then 

raise XNOTFOUND; 
else 

Low := Next +1; 
end if; 

end case; 

If Low > High then 
raise XNOTFOUND; 

else 
Next := (Low + High)/2; 

end if; 

end loop; 
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Scrambled version: 

X006 := XOOS'FIRST; 
X007 := XOOS'LAST; 
X005 := (X006+X007)/2; 

«L001»X(X)1 := X002(X008(X005)^009); 
ifXOOl/= 1 then 

goto L002; ,      , 
end if; 
if X005 /= XOOS'FIRST then 

gotoL003; 
end if; 
raise X999; 

«L003»X007 := X005-1; 
goto L007; 

«L002»if XOOl /= 2 then 
goto LOOS; 

end if; 
goto L004; 

«L005»if X005 /= XOOS'LAST then 
goto L006; 

end if; 
raise X999; 

«L006»X006 := X005+1; 
«L007»lf X006 <= X007 then 

goto LOOS; 
end if; 
raise X999; 

«L008»X005 := (X006fX007)/2; 
gotoLOOl; 

«L004» 

43. Problems Related to Component Selection 

One of the major problems facing a user is how to select the appropriate software component, the specifications of the com- 
ponent must be well understood, and in such cases the performances must be thoroughly tested before a project manager can give the 
go-ahead. 

Giving components on loan for testing purposes is quite risky in that there is very little that can be done to control that the user has 
not kept an  unauthorized copy  if the component is not purchased. 

One potential solution to this problem is the notion of a subscription service: the vendor acts as a software publisher, with a 
number of categories (e.g., general algorithms, civil engineering, aerospace, graphics,...). 

The customer subscribes to certain categories and is given the existing component base for the chosen categories and 
keeps receivmg new components during the subscription period: the central idea is that the customer does not necessarily acquire 
only the components that are needed now, but an entire library of components among which he can select those he wants to use- 
he can of course exercise them at his leisure to test the performance characteristics, etc... This allows a distribution of components 
on a much wider scale, and therefore lower prices per component. 

5. ADA FEATURES FOR REUSABLE SOFTWARE 

There are three major aspects whereby a language can support the construction and use of software component: 

the language structure must allow for the incorporation in a program of physically separate units that group together all what 
the component must   provide,   in   terms of definitions, variables, subprograms, tasks,... 

Software components must be flexible in order to be easily tailored to specific application contexts. Parameterization facil- 
ities are called for here. 

. Software components are to be used in  different  contexts and on different machines.  A language design  that encourages the 
development   of   tmly portable   software   is   therefore appropriate. 

5.1. Packages and Separate Compilation 

^s!m°ct°on"  °^ ^"^^  ^''^^''  °°°^"'"'=^"'«Pri'"^'y mechanism for structuring progn.ms. Packages provide for encapsulation and 

^JZlVl^^'S^ir^   ""T '" "-/-'^-"°-'hat are related to a given concept: such declarations may have to be 
grouped  together  either for  logical  reasons   (e.g., trigonometric funUons) or for implementation reasons, because they access the 
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same data (e.g., procedures to add or remove an element to a list). 

The most valuable software components are those that are too complex to be worth re-implementing. As such they must offer much 
more than a single procedural interface. The package is therefore a convenient way to group together the various aspects of a 
software component The package will be the embodiment of the component 

The separation between a package specification and a package body is a further advantage in that the user is presented with only 
the information required to use the component, without having to sort what is relevant from a user's point of view from what con- 
cerns only the implementation. 

The language rule that makes the contents of a body inaccessible to the rest of the program forms the basis for encapsulation, i.e., 
preventing the user from interfering with the implementation of a component. This is necessary to enforce the integrity of the 
internal data structures used and the proper behavior of the component. Without this safety, it would be very difficult to 
provide any kind of warranty concerning an independently tested component. Note that the notion of private type is a neces- 
sary complement guaranteeing that a user can declare several objects that are administered by the package, without the possibil- 
ity of compromising   the   internal representation   of   these   objects. 

Separate compilation is another fundamental feature: the separate compilation mles allow a user program to reference the visi- 
ble declarations of a package without having to insert these declarations in its code (a reference to the name of the package is 
sufficient). 

Example: 

package COMPONENT is 

procedure some_action (...); 

end COMPONENT; 

with COMPONENT; 
procedure USERPROGRAM is 

begin 

COMPONENT.some_action (...); 

end USER PROGRAM; 

As a result, it is feasible to distribute components in binary form if necessary without forcing the user to have "external" declarations 
in his program, while retaining the tight checking capabilities of Ada. Encapsulation and abstraction (the fact that a component is 
accessible only through its "logical" interface, without reference to any implementation intricacy) have also an important impact 
on maintenance: new versions of a component can be released without requiring any modification to the user programs, or 
even any recompilation —only relinking is necessary, and even that could be avoided on certain systems, e.g., Multics. Also com- 
ponents can be available in multiple versions corresponding to a common specification, leaving the user free to switch from 
one version to another if he sees it fit 

5^. Generics 

In some cases, a component that has been developed can be reused as is in another context. However, in most situations where 
reuse is contemplated some adaptation is necessary. This will be in particular the case whenever a component is supposed to 
operate on certain user defined types. A typical example would be a set of functions that operate on fixed point data: in Ada, 
there is no single fixed point type; rather, the user must declare a type based on his own range and precision requirements, e.g.. 

type MEASURE is delta 0.0005 range -273.00 .. 10000.0; 

From such a declaration, the compiler will determine the appropriate representation. Now suppose Uiat an interesting component has 
been written, that performs some complex computation on a fixed-point number, e.g. taking the logarithm. The component itself 
could not have been written for this specific type, which was not even known when it was developed. So, what is needed is a way 
to parameterize the component in terms of a user type. This is exactly what is provided by the generic facility: by writing 
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generic 
type ANYFIX is deita o; 

function FIXLOG (X: ANYFIX) return FLOAT; 

the writer of the function will permit its use with any user-defined fixed-point type. Parameterization facilities also allow tlie use of 
user-defined  variables   and    subprograms   inside  a  software component. 

A large class of components can make direct use of these facilities in particular components that define and manipulate data struc- 
tures (lists, queues, stacks, trees, graphs,  ...) or general purpose algorithms (e.g., sorting and searching). 

In essence, a generic unit is a template for what can become a real unit when all the generic parameters are determined. In the 
above example, FIX_LOG is not a function that can be called directly by the user. Ratlier, the user must first create an actual func- 
tion from the template; this is called instantiating the generic unit: 

function MEASURE_LOG is new FIX_LOG (MEASURE); 

After the instantiation, MEASURELOG is treated exactly as a function that would have been declared locally. 

Both  packages  and  subprograms  can be turned into  generic units. 

This feature makes an existing component directly usable in many more contexts than it would have been without the parameterization. 
This is obviously an important factor in determining the economic benefit of writing a software component. 

53. Portability Features 

There are three major elements that can result in a poor portability of software: 

• differences in the representation of types; 

• use of non-standard features, or system-dependent libraries; 

• use of "dangerous" programming practices, such as violating the types of values (a "violation" of a type occurs when the 
bits forming a value (e.g., an integer value) are interpreted as if Uiey represented a different value (e.g. a floating point 
value). 

Non-portability could be a severe hinderance to tlie large dissemination of software components. Fortunately, several of 
the above issues have been addressed in Ada. 

53.1. Control over Type Representation 

A programmer can force a certain representation of the values of a type through representation clauses. Also, and equally impor- 
tant, the numeric types, that are often a big source of non-portability are expressed in Ada solely with respect to the desired properties 
of the values, in terms of range and precision, independently of an actual physical implementation. Thus a user can declare: 

type MYJNT is range 0 .. 200; 
type MY_FIX Is delta 0.0002 range 0 .. 86_400.0; 
type MYFLOAT is digits 9; 

The given infonnation is sufficient to let tlie compiler select a representation that is sufficient to accomodate the required 
properties; In this way, the programmer is relieved from the headaches caused by different word lengths on different 
machines. 

53.2.  Use of non-standard Features 

Because the Ada language itself is standardized, there is no real non-standard feature. On the other hand, there may be a variety 
of specific components or libraries available on a given system, upon which a user program relies. Little can be done to prevent 
that. However, one can hope that widely used components written entirely in Ada become generally available, pretty much in the 
same way as the portable "C" library. 
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533.  Use of Dangerous Practices 

Type violations, randomly   accessing   the   memory, and similar interesting practices are extremely restricted in Ada.  They can 
be done, but not without the user explicitly saying so. 

For instance, to use an integer as a floating point value, one  would have to reference and  instantiate the predefined generic function 
UNCHECKED CONVERSION, e.g.. 

function INT TO FLOAT Is new UNCHECKED CONVERSION (INTEGER, FLOAT); 

and then use it explicitly, e.g.. 

INT TO FLOAT (X); 

Accessing a specific address  in memory would require an address clause, such as: 

for X use at 16#FFF0A#; 

These low-level aspects both restrict the use of dangerous programming practices, and flag them for attention when porting 
is attempted. 

Through its package stmcture, its separate compilation facilities, the flexibility offered by generic units and the possibility of 
writing tmly portable software, Ada will permit the generalized practice of reusing components in software systems, and will also 
be a determining factor in the establishment of a real software component industry. 

6. PROGRAM CONSTRUCTION AND SOFTWARE COMPONENTS 

The possible gains offered by an effective reuse of software components may lead to a modification of the way software sys- 
tems are built. One must consider the potential for using existing components when designing a system; it is also advisable to scru- 
tinize newly developed software for possible "componentization", i.e., slightly modifying the specifications of what has been 
designed so that certain parts can become reusable components. 

6.1.  Using Existing components 

The simple attitude towards reusing software consists in specifying and designing a system, and looking for possible components to 
fill in the slots traced by the designer. In such a case, the potential for finding exactly the appropriate component is rather low, and 
may be time-consuming. The desired component might not exist, or may be found in some especially exotic place (like Sophia- 
Antipolis, for instance), where people would not search for it 

With such an attitude, only two kinds of components may be reused: those that are already well-known in-house, and those that are 
fairly big and correspond to a  standard  (e.g. a graphical or data base interface). 

Many more parts of a system could probably be implemented by using existing components if the designer can make his choices 
based on the availability of these components. 

It must be kept in mind that component selection must be done eariy in the design, because the specifications of a given component 
may have an influence on the architecture of the  system in which it is embedded. 

In order to do this, a special activity must be launched at the start of a project, which consists in establishing a catalogue of relevant 
components for the project, possibly acquiring the most promising ones to evaluate and test them. This could be done using a list 
of keywords that relate to the project, deriving them from the requirements analysis. Such an activity is a fairiy specialized 
one, and one could expect to see a "component engineer" as a particular profile in a project team. 

The work of finding the relevant components can of course lead to specialized tools, i.e., component data bases, that can be 
interrogated by keywords, performance information, protocols, etc... 

62. Componentizing Software 

An important part of the component base that will be effectively reused is likely to be internal to a company; such a base is built 
gradually by  accumulating  components that had been    originally designed for a specific system. 

However, if a system is constructed without special attention, a variety of things may hinder the extraction of true components: 
the interfaces may be poorly packaged, Uie  component may be relying on some global data that is at tlie heart of the system, or it 
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may make assumptions on how it is going to be used which may not be valid in a different context. The design is also likely to be 
too specific, e.g.,  operating on  a specific  data type where tliis  could be parameterized through use of the generic facility. 

If there is a strong will to develop a component-based approach, part of the review process that goes on in a project must be devoted 
to identifying those parts tliat could lead to reusable components: during the global design, modifications can be made to 
the interfaces, to promote encapsulation, to group togetlier related objects or, to the opposite, to separate things that are not related, 
and to eliminate unnecessary dependencies. During detailed design, one should also correct certain options that could hinder 
the extraction of a component. Lastly the potential components that have been identified must be given to separate teams for realiza- 
tion and testing, as it is important that they become an independently maintained product very quickly. Here again, the quality 
assurance team could incorporate a specialized "component adviser", whose specific objective is to look for potential components 
in a software project. 

7. CONCLUSION 

Ada offers a unique opportunity to reach a significant productivity improvement in the software through an effective reuse of 
software components. Specific features of Ada are central to such an evolution: the package structure, separate compilation 
rules, the generic facility, and  the improved portability of Ada  software. 

One  should   expect that  such  an  evolution will  be  gradual,  as mentalities will have to adapt to the full potential  offered by the 
b reutilization of software  components.   Bases  of software components will have to  be  built  and  made  accessible on a commercial 
I basis, leading to an industry of software components. 

; Such an industry will have to face fairly high investment costs,  and be aware of the specificities required for the effective distribution 
|- of   software   components.   Once   the appropriate   structures   are   in place, both inside companies and   on the open market, com- 
l ponents may have a profound   impact   on   the   way software is developed. 

\ 
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The ICC-Ada compiler has enjoyed considerable success in flight applications, 
of this success is due to careful consideration during its development of the 
which are critical to embedded systems applications.  Compiler development by 
involves various trade-offs, Ada compilers in particular.  Understanding these 
and trade-offs is important to the selection and use of an 
system applications. 

Much 
issues 
nature 
issues 

Ada compiler for embedded 

1. Introduction 

Ada was not designed to be easy to compile. If so, there would be no reason for 
this paper. Ada compilers were intended to be written only once, and used forever, so 
the focus in language design was to make life easy for the programmers using Ada. This 
is in sharp contrast with the design of most other languages, including Pascal, on which 
Ada was loosely based. In addition to the many difficult language features and their 
interactions for a compiler developer to address, many design decisions must be made, 
affecting the usability of the compiler for various purposes. It is therefore important 
for the user to be aware of the goals of the compiler developers, and the tradeoffs they 
have made in developing their compilers. Some of the major issues facing a developer 
are portability, compile-time resource requirements, optimizations, run-time 
environments, interfaces to various other tools, and customer support. Each of these 
will be addressed in turn. 

No single compiler can possibly do everything right for every user. But then not 
all users need use the same compiler. Fortunately a number of different compilers have 
been developed, and with widely diverging goals. Some excel at optimization, some at 
compile speed, some at error and warning diagnostics, some at library management, some 
at environment tools, etc. It may even be appropriate for a single user to use one 
compiler for training, another for rapid prototyping, another for PDL processing, 
another for full scale development, and then hand the project off to be maintained on 
yet another. They may even all run on different computers. The strict standardization 
of Ada makes this feasible. 

Despite this degree of standardization, compilers used for generating production 
code are not particularly interchangeable. Each has its own unique run-time systems, 
and implementation-defined pragmas and attributes for dealing with embedded 
applications. And each is designed to work with particular assemblers, linkers, 
debuggers, floating point processors, timers, i/o devices, memory models, etc. Since 
various implementations do different optimizations, coding rules for creating efficient 
code will vary accordingly. In addition, the language-defined low-level mechanisms are 
not well tested by the validation procedures, and have in fact been omitted by many 
implementations. Selecting a production compiler therefore deserves careful 
consideration. 

2. Portability 

For some compiler implementers, the decision of whi 
to support is a non-issue. Mini-computer manufactur 
compilers on their own systems. But even they typically 
usually more than one host operating system. Independen 
to support as many different host/target combinations as 
both for the implementer as well as for the use 
amortizing the compiler development costs over a broad u 
by not getting locked into a particular brand of hardwa 
some instances it is possible, and very convenient to 
architectures from the same development host. 

ch host and target environments 
ers for example, will host their 
sell a range of equipment, and 

t compiler vendors typically try 
possible.  This has benefits 

r.  The implementer benefits by 
ser base, and the user benefits 
re for software development.  In 

target to several different 

Designing a compiler to be rehostable entails several constraints, none of which 
are severe. It means not relying on "compiler-compiler" tools which are only available 
on particular systems. It also means not relying on particular text file formats or 
file-system operations. It also rules out reliance on process mechanisms for such 
things as implementing the library management system. Tricky, non-portable coding 
techniques cannot even be considered. And an implementation language must be chosen for 
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which compilers are widely available. 

The choice of an implementation language is critical. It usually boils down to 
using the compiler to compile itself, or using some other language. The implementers 
who have chosen mature languages have so far ended up with the most efficient 
implementations. It remains to be seen whether the others can do as well using Ada. 
ICC has taken a middle ground approach. Our compiler is written in an extended Pascal 
dialect, but uses it's own code generator, by sharing the internal representation with 
the Pascal compiler. This results in an efficient implementation, avoiding any Ada- 
related inefficiencies, but also one that is easy to rehost. Rehosting is done simply 
by retargetting the code generator, and then recompiling. No lines of source code need 
be changed. 

Retargetability of compilers in general is a fairly well understood technology. A 
low-level intermediate language is used which can be efficiently mapped onto various 
target instruction sets, DIANA, by contrast is a much higher level intermediate 
language for Ada, used primarily as the interface between the front and middle "ends" of 
some Ada compilers. Retargetability is a poor excuse for slow compilers, since they all 
generally use similar intermediate representations. Retargetable compilers have an 
added reliability advantage in that some subtle bugs typically show up (and are fixed) 
each time the compiler is retargetted. 

3. Compile-time Resource Requirements 

Probably the major resource issue, because it directly impacts rehostability, is 
memory utilization. It may be possible to build a 4K or 8K BASIC (although most current 
versions are much larger), but not an Ada compiler. The best to have been done so far 
was an implementation for the 128K byte Western Digital Micro-engine, although this 
compiler had severe restrictions on program size. Potential host machines can be 
divided roughly into three categories. First is 8-bit micro-computers and older 16-bit 
mini-computers with addressable spaces of 128K bytes or less. Although millions of 
these machines exist, and it would be desirable to accommodate them, very little can be 
done. Not only is their main memory too small, but their disc space, and processing 
throughput are usually impractical for Ada as well. It is however feasible to cross- 
target Ada compilers to these computers, although care must be taken not to fill their 
entire address spaces with the run-time system. 

Some people used to think that the small host machine problem could be solved by 
subsetting the language. However, not only was this severely frowned upon by the AJPO, 
but it turned out to be impractical. Ada is too tightly integrated to be subsetted 
cleanly. For example, the text_io package depends on almost every feature of the 
language except tasking and subunits, and even these could be used. Text_io uses 
overloading, generics, exceptions, derived types, default parameters, unconstrained 
arrays, renaming, packages, etc. And not only does text_io use the full language, but 
even beginning users do the same, for example unwittingly using derived types in a 
simple integer type declaration. Tasking and subunits could be cleanly subsetted away, 
but with only modest savings in compiler size. Most other cuts would leave a different 
language, not a true subset. 

Even though Ada can not be cleanly subsetted, it could however be simplified, 
although not to the extent of making compilers significantly smaller. The language 
contains hundreds, maybe thousands of restrictions, many of which serve no useful 
purpose. At best they clutter compilers. Worse, they frustrate users. Some, such as 
the restriction that functions may not have 'out' parameters, are vestiges of former 
versions of the language that in this case attempted to prevent functions from having 
side effects. Other restrictions were intended to make implementations easier, or exist 
because no use could be thought of for a construct. But many of these have been shown 
to be misguided. And yet others, such as the restriction that case expressions must be 
discrete, apparently exist simply because it has always been done this way. 

Other simplifications that could be done involve eliminating syntactic ambiguities 
and inconsistencies. For example, the string literal "+" as an actual parameter in a 
generic instantiation could really be a string literal, or it could be the name of the 
addition operator, depending on context. An example of an inconsistency is that a 
task's priority is set by a pragma, its storage size is set by a length clause, and an 
object's address is set by an address clause, all with different syntax. Compiler 
developers are rarely content to leave the language design to others...but I digress. 

.At the opposite end of the computing scale are the powerful 32-bit (or more) 
machines with virtual memory, or at least several megabytes of addressable space. 
Supporting Ada on these hosts is not a problem as far as memory is concerned, although 
surprisingly enough, due to contract requirements, some compilers designed only for this 
class of hosts have elaborate mechanisms for minimizing main memory usage. On these 
hosts, memory management is best left to the operating system. 

The final category is machines with approximately 512K-1M bytes of main memory. 
This includes the current generation of 16-bit micro-computers as well as some older 
large scale computers with 18-bit address spaces. These constitute the interesting 
case, both from a technical standpoint, and from the perspective that software 
development may be migrating from typically mini-computer development systems, to 
networks of distributed work-stations.  Ada compilers can be implemented for these 
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machines, if memory usage is minimized. 

Memory usage for a compiler consists of three components: code space for the 
compiler itself, data space for the symbol table, and data space for the parse tree. 
Code space can be minimized in three ways: by using an interpreter to take advantage of 
compact stack oriented code; by segmenting the compiler and using overlays; or by 
splitting the compiler into multiple independent passes. Interpretation is feasible, 
and has in fact been used for some implementations, but slows compilation considerably. 
The use of segmentation is not particularly feasible, since compilers tend to frequently 
hop from one area to another. For this reason, it is important on virtual memory 
systems to have sufficient real memory to minimize thrashing with any compiler. 

Using multiple passes is the most common approach, but it too has its drawbacks. 
Foremost of which is the i/o needed to reconstruct both the symbol table and the parse 
tree. This i/o time is usually the bottle-neck limiting compilation speed. And not 
only does it take time, but it also adds a significant amount of code to the compiler to 
read and write these structures which have many different kinds of nodes, which defeats 
the entire purpose. These structures could potentially be kept in memory between 
passes, but that also defeats the purpose of minimizing memory usage. The conclusion is 
that not much can be done practically to minimize code space requirements, with the 
possible exception of using a good compiler to compile the Ada compiler. 

Some implementations attempt to control symbol table space usage. On the surface 
this is very attractive, since symbol table space requirements can be quite high in Ada. 
Packages such as text_io for example have large interface sections which are made 
visible by a 'with' clause. Multiple instantiations of generic packages can also 
rapidly use up space. And seemingly simple derived type declarations often implicitly 
declare a number of functions to operate on objects of the type. However there are 
major drawbacks here too. Overloading rules for example require the compiler to search 
the entire symbol table for alternate interpretations of subprogram calls, even for such 
seemingly simple expressions as "2+2". Having to page the entire symbol table in and 
out of memory just to interpret such common expressions could be prohibitively 
expensive. Also the necessary checking to determine whether a particular symbol 
definition was in memory every time it was referenced is costly both in time and code 
space. 

Another way to reduce symbol space requirements is to use ordinals instead of 
pointers to reference symbols. Where pointers are likely to take up a full 32-bit word, 
ordinals can be 16 bits, or possibly sometimes less. This approach has two drawbacks: 
one is that table sizes place arbitrary limits on the number of symbols of particular 
classes in particular scopes; the second is that references to the symbols necessarily 
are likely to be less efficient in both time and space than having a pointer directly to 
the symbol. Since Ada was designed for large programs, any arbitrary symbol table limit 
is almost guaranteed to be exceeded at some point. 

ICC makes neither of the these attempts at minimizing symbol space usage. The 
penalties in terms of compilation speed or arbitrary limits on number of symbols were 
felt to be too great. Instead ICC relies on minimizing code size, and eliminating parse 
tree data space requirements in order to run the compiler effectively on work-stations. 
Data space for parse trees is eliminated by parsing one statement at a time, generating 
the appropriate nodes to the intermediate file, and reclaiming any storage used in the 
process. This allows arbitrarily long files to be compiled, which is particularly 
useful when large FORTRAN modules, for example, are translated to Ada without being 
broken into separate modules. 

Ada was not really designed for this kind of one-pass, statement at a time, mode of 
compilation. The lack of a requirement for declaring labels, for example, has the 
unfortunate result that a statement can make a previous statement illegal. Also, in- 
memory parse tree representations are very handy for many of the required semantic 
checks, and for generic instantiations, but all these problems have solutions. 

4. Optimizations 

Optimization of Ada compilers is likely to take longer than anyone expects. There 
is much to be done. And the designers of Ada practically assumed the existence of 
significant optimizations. One of the major differences between Ada and typical systems 
programming languages, is that Ada emphasizes portability, and the others emphasize the 
ability to directly manipulate the hardware at the lowest possible levels. In order for 
Ada to achieve similar results, a large number of optimizations must be performed. And 
with Ada, unfortunately, it is not always easy to tell for a given compiler which 
constructs generate efficient code, or under which circumstances. Slight changes to a 
program can have significant effects, such as when a static constant is made dynamic. 

Optimizations fall into two broad categories. Those that are to be performed in 
the front-end of the compiler and those which are code generation issues. Code 
generation issues are fairly well understood. They are generally independent of the 
input source language. This means that code generators and optimizers developed for 
other compilers for other languages can readily be adapted to Ada compilers. Although 
they still need significantly more work tailoring them to recognize the common 
inefficiencies created by Ada front-ends. 



6-4 

The more difficult category consists of generating reasonable intermediate code for 
each of Ada's constructs, since there is only so much an optimizer can do with what it's 
given. Each of Ada's features requires special attention. Often there are several ways 
of implementing the feature, each better in certain cases. Some implementations will 
support only one. Others will allow the user to control the implementation via a 
pragma, and in other cases, the compiler will attempt to determine the best 
implementation. 

In exception handling, for example, the overhead can be placed either at the time 
of a raise, or at the time any scope is entered or exited, or possibly at the time a 
scope is entered only if it contains a handler, or some combination of these. No single 
method is best for all applications. In generics there are obvious tradeoffs between 
space and time, depending on whether or not generic bodies are shared, and under what 
circumstances. Discriminant records containing dynamic arrays can be implemented in a 
variety of ways, depending on whether it is more important to efficiently access fields 
of the record, or to copy and compare the records. Descriptors for unconstrained arrays 
and discriminant records can be created with the data they describe, or only on demand, 
or can be shared when possible. Bit operations are not directly available in Ada, and 
can only be effectively used if logical operations on packed arrays of bits generate 
single machine instructions. 

Tasking will require numerous optimizations, depending on what the purpose of the 
task is, or on how many tasks will be running at a time, etc. Simple tasks used only to 
synchronize accesses to shared objects need not involve the full complexity of the 
scheduling algorithm. And real-time applications such as flight control which may 
simply switch back and forth between a foreground task and a low priority background 
task can also theoretically involve almost no task-switching overhead. ICC has much 
work remaining in most of these areas. 

5. Run-time Environments 

Run-time environments are an area of great importance for embedded applications, 
and Ada compiler run-time systems can vary greatly. Of prime importance often is the 
size of the run-time system. A related factor is its decomposability, so that no space 
is taken by something which is never used. Other concerns are support for handling 
interrupts, time-slicing and task scheduling, asynchronous or non-blocking i/o, various 
forms of automatic garbage-collection, and the ability to run more than one Ada program 
simultaneously on the same processor, with inter-process communication. Tailorability 
of the run-time system is also very important, particularly in unique embedded systems, 
whether it "voids the warranty" or not. 

Another run-time issue becoming more important is the ability to run Ada code on 
unique architectures, such as multiple-processor environments, either tightly or loosely 
coupled. Support for accessories such as array processors, or other such "peripherals" 
is also important to some classes of users. Again ICC does not claim to have the the 
final answers, although having virtually its entire run-time system written in Ada makes 
customization easier. 

6. Tools 

An Ada compiler is but one member in a family of tools, although a very important 
member. Actually, possibly too much effort was expended early on in the Ada program on 
environment issues, and not enough on the compilers themselves. Compilers were thought 
to be well understood technology, requiring little attention. They were also mistakenly 
thought not to fit well in existing environments. In the early stages of Ada's 
application to embedded systems, a good compiler with a functional environment is likely 
to be more useful than a good environment with a functional compiler. 

However, as the compilers mature, the environment tools will increasingly gain in 
importance. Also, the larger the project, the more important the tools become. And Ada 
has a way of vastly complicating the tools required. For example, typical debuggers 
were not designed to support Ada tasking. Overloading causes problems uniquely 
referring to subprograms. And arbitrarily long identifier names with full significance 
are unheard of. An ironic aspect of complicated Ada tools, particularly the compilers 
themselves, is that they can least afford to incur the additional overhead costs of 
layered kernels, such as CAIS, which are designed specifically to aid these tools. 

The library management system for a large Ada project is probably the most critical 
tool. It must allow for such things as hierarchies of program libraries, with package 
specifications under configuration control, and package bodies which can be modified in 
a local context, debugged, and integrated with others. Minimizing the number of 
recompilations required by any given change is also important on large projects, but not 
at the cost of compilation speed. Ada's requirements of full checking across 
compilation boundaries create enormous burdens on a library system, that earlier 
languages knew nothing about. Other complications involve libraries scattered across 
multiple host computers, and libraries that support multiple versions of a compiler, 
both for the same target or for different targets. 
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7. Support 

An unfortunate side effect of Ada's complexity is that even the sophisticated users 
will generally prefer not to do their own compiler support. With other languages, 
critical bugs could be fixed immediately, and optimizations added. But in an Ada 
compiler, fixing one bug is likely to cause several new ones. Even most mini-computer 
vendors, who would otherwise write their own compilers, are instead adapting portable 
implementations. And Ada compilers will always have bugs. Users still may find it 
feasible to make code-generator modifications to their Ada compilers, but should be 
alert to the issue of vendor support. 

8. Conclusion 

The design and implementation of an Ada compiler is a very demanding project, and 
likely to be never ending. Along the way, many design decisions are made affecting the 
usability of the compiler for various applications. Despite validation, all Ada 
compilers are not created equal, nor is it necessarily easy to switch from one to 
another for embedded applications, and they are not free of bugs. Careful compiler 
selection is called for to reap the benefits that have been painstakingly designed into 
the language, its compilers, and programming environments. 
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Summary 

This paper discusses Ada Compiler Validation from the viewpoint of both the compiler supplier and the com- 

piler user. The objectives of the requirement for validation and the resulting benefits, as well as the limita- 

tions of validation are presented. The process of Ada compiler validation is detailed along with its various 

problems as well as issues relating to validation and the use of validated compilers. Solutions to these 

problems and issues are explained, as they are proposed in a recent AJPO draft of a revised validation 

policy. 

Preface 

The proliferation of languages and language dialects has been recognized as a major contributing factor to 

the high cost of software development and maintenance. Problems that arise out of such proliferation in- 

clude the added expense of maintaining a software environment for each such language and dialect, the 

cost of educating personnel in the use of many different languages, and the Increased cost of porting 

software to other systems. 

The programming language Ada was developed by the US Department of Defense (DoD) to become the only 

programming language to be used in DoD mission critical computer resource (MCCR) projects. Ada has 

been standardized and mechanisms have been put In place to prevent the existence of language dialects. 

The validation of Ada compilers is an Integral part of these mechanisms. 

This paper discusses various aspects of the Ada compiler validation, including Its objectives and limitations, 

the actual process of validation, the policy for the use of validated Ada compilers within U.S. OoO, and the 

economics of compiler validation. 

1.  Oblectlyea of Validation 

Past experience with standardized languages (e.g.. Jovial, Pascal, Cobol), has shown that the mere exist- 

ence of a standard is insufficient to prevent the emergence of language dialects, as compiler vendors tend 

to deviate In their compiler implementations from the respective language standard. As a consequence, 

software developed with one compiler often cannot be compiled with a compiler supplied by another vendor 

without major changes to the software. As a result, porting of software between systems employing different 

compilers becomes expensive, if not economically Infeasible. Particularly in the military setting, large 

software systems have a lifespan of many years, during which enhancements and new hardware develop- 

ments will make it necessary to port the software to new underlying systems. 

Recognizing this problem, the U.S. DoD has taken steps to insure that the mistakes of the past are not 

repeated In the Ada effort. It has obtained a trademark on Ada and requires that the conformance of com- 

pilers to the language standard, ANSI/MIL-STD 1815a, be ascertained by means of the validation process, 

before such compilers are allowed to be called Ada compilers. The objective of this requirement Is to 

prevent language dialects and thereby to enhance the portability of software written in Ada. 

Ada It a registered trademark of the United States Qovernment, Ada Joint Program Office 
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2. rfie Meaning of Validation 

Validation Is not a replacement for acceptance testing by the buyer of an Ada compiler. Staying truo to Its 

objectives, the validation process tests only for conformance with the language standard. It does not ad- 

dress Issues of usability or efficiency of the compiler and the generated code. For example, the first Ada 

translator ever validated was the New York University Ada Interpreter, which was a remarkable achievement 

as an experimental system for semantic modelling and for teaching Ada, but definitely not a system to sup- 

port application code written  In Ada. 

Moreover, validation is not a guarantee of compiler correctness. Because the validation process employs 

testing by examples as the test method, only part of the Intricacies of the Ada language can be covered by 

the validation. 

On the other hand, the test suite of the validation process Is sufficiently large and well designed that broad 

coverage Is achieved. Successful processing of the test suite is a significant and major milestone for com- 

piler developers on the way to compiler correctness and conformance to the language standard. As such. It 

significantly raises the users' confidence In the correctness and completeness of Ada compilers. 

Notwithstanding validation, users must evaluate the appropriateness of a validated compiler for their par- 

ticular needs along all dimensions, such as code efficiency, usability and user friendliness, interaction with 

the environment,   provision of features that are optional in the language standard,  etc. 

3. The Validation Policy,   Procedures,  and Guldellnea 

In January  1986,  AJPO drafted a new validation policy,  consisting of three documents: 

;  the general  policy for compiler validation; 

;  the procedures for the conduct of the Ada validation process;  and 

;   the policies and guidelines for the use of Ada compilers In DoD. 

The first document establishes the policies for the validation process applicable to Ada compilers both for 

general trade and for U.S. DoD applications. The second document details the procedures necessary to 

establish a compiler as a validated compiler. The third document Integrates the requirement for validation of 

compilers with the constraints of life-cycle management procedures In U.S. DoD projects. While this third 

document relates specifically to the use of Ada In U.S. DoD, similar issues will arise In general trade 

usage of Ada compilers. It therefore can act as a model for general trade companies in adopting similar 
policies and guidelines. 

in the subsequent sections, the provisions of the draft policy are described in more detail. Since, at this 

time, the draft is still under discussion and the policies and procedures not officially issued, changes may 

occur that are not reflected In this paper and may contradict Its contents. 

4. The Contponenta of the Validation Process 

The three organizational components of the validation process are the Ada Joint Program Office (AJPO), the 

Ada Validation Organization (AVO), and the Ada Validation Facilities (AVF) . The technical component Is the 

Ada Compiler Validation Capability (ACVC). These components and their role are briefly described In the 
following sections. 

4.1.  The Ada Joint Program Office  (AJPO) 

The Director of the AJPO formulates the validation policy. Issues charters to AVF, and Is ultimately respon- 

sible for all components of the validation process. Validation certificates are Issued or authorized by AJPO 

after successful completion of the validation process. 
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4.2.  The Ada Validation Organization (AVO) 

AJPO has chartered an Ada Validation Organization (AVO) with the tasi< to establish detailed guidelines and 

procedures for the process of Ada compiler validations, and to supervise Ada Validation hacilities (AVH) in 

their conduct of the validations. The AVO consults to AJPO on validation issues that arise from compiler 

validations.   Furthermore,   the AVO maintains the lists of validated compilers. 

4.3. The Ada Validation Facilities (AVF) 

The AVF are Impartial organizations that are chartered by AJPO to conduct validations. Such charters are in 

effect for three years and are renewable. AVF are bound to adhere to the validation policies issued by 

AJPO and to the procedural guidelines established by the AVO. The AVF act as the interlace between sup- 

pliers of compilers that desire validation of their compilers and the certification body comprising AJPO, AVO, 

and AVF. 

Currently, five AVF are in existence; two In the U.S., and one each In Germany, Britain, and France. 

Their addresses arc  listed  in Appendix B. 

4.4. Ada Compiler Validation Capability (ACVC) 

The AJPO has procured the Ada Compiler Validation Capability (ACVC) as the technical means to ascertain 

conformance of Ada compilers to the language standard. The core element of the ACVC is a large set of 

test programs to be submitted to the compiler to be validated. Currently, this test suite consists of about 

2400 programs, each of which checics particular aspects of the language. About hail ol the tests are 

programs that contain errors that a compiler must detect. The remainder of the tests are correct Ada and 

must be executable after compilation. Some of the tests examine the correct implementation ol optional lea- 

tures of the language, which a compiler may or may not support; the applicability ol these tests depends 

on the individual compiler. The tests containing errors usually contain a large number ol variations ol the 

same class of error. Each of these errors must be recognized by the compiler. Since error recovery oc- 

casionally will masl< subsequent errors, such tests may have to be split Into multiple tests to isolate in- 

dividual error situations, thus further increasing the number of test examples used in the validation process. 

The result of the tests containing errors is obtained by examining the listings produced by the compiler. Ex- 

ecutable tests, on the other hand, are carefully designed to condense an indication of success or laiiure 

Into a small print-out produced  by the execution of the test. 

The ACVC is augmented by software tools that facilitate the evaluation of test results, and by the 

Implementers' Guide which is a detailed commentary on ramifications ol the Ada language semantics and on 

the corresponding ACVC tests. 

At any given time,   three versions of the ACVC test suite are in existence: 

1. the development version; this version Is not released to the public. New tests and corrected 
tests are added to this version. 

2. the field-test version: this version is available to the public. During the first three months of its 

release, individual tests may be corrected. After three months, this version is frozen and can 
be optionally selected by a compiler impiementor to be used  In the formal validation  process. 

3. the released version; this frozen version of the test suite is generally used during formal valida- 
tion. Tests in the frozen versions that are found to be incorrect are withdrawn and, alter being 
corrected,   are added to the development version. 

The field-test and released versions are available to the public. Periodically the released version is retired 

and replaced by the field-test version; the development version becomes the field-test version and a new 

development version is created. Currently, this change of versions occurs in six-month intervals on June 

10th and December 10th of each year. Consequently, for formal validation, implementers have a choice 

between the field-test version and the released version from September 10th to December 10th, and from 

March 10th to June 10th. During the remainder of the year only the current released version ol the ACVC 

test suite can be used in formal validation. The overlap of ACVC versions admissible in validations has been 

Introduced to permit compiler suppliers to reduce their risk of failing to complete the validation process be- 

fore   the   released   version   expires;   by  choosing   the   frozen   field-test  version   lor  validation,   potential   delays 
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can be absorbed more easily. 

As the ACVC Is rapidly maturing. It Is expected that. In the near future, the release cycle will be 

lengthened so that the released version of the ACVC test suite has a  lifetime of nine or twelve months. 

5.   The Validation Process 

Ada compiler validation requires that ail applicable tests of the ACVC test suite must be passed successfully 

by the compiler to be validated. Thus, validation testing is a pass/fail decision. The evaluation of the test 

results Is done by an impartial body, i.e., an AVF, in two major steps: first, the AVI- examines the test 

results as they were submitted to the AVF by the compiler supplier; at this stage, testing issues that the 

supplier or the AVF might raise, such as the applicability of Individual tests, are resolved. Second, the AVh 

witnesses the on-site testing of the compiler, the results of which formally determine the success ol the 

validation. Normally, any causes for potential failure of the validation testing are discovered and corrected 

during the first step so that on-site testing becomes a mere formality. 

The applicability and correctness of individual ACVC tests may be challenged by the compiler supplier. Ap- 

plicability Issues arise for tests that examine optional features of the language not supported by the com- 

piler. Correctness Issues relate In most cases to tests for which the test designers Interpreted the language 

standard differently than the compiler writers. These challenges are forwarded by the AVF to the AVO 

which, with the help of a group of language experts, determines whether the compiler writers' interpretation 

is permissible by the language standard. If so, the test is withdrawn from the test suite. The compiler 

supplier is informed about the disposition on the challenge typically within two weei<s. 

After successful validation, a Validation Certificate Is Issued by AJPO to the supplier of the compiler. This 

certificate Is valid for one year and entitles the supplier ol the compiler to market the compiler as a 

validated Ada compiler. The Validation Certificate attests to the successful completion of validation testing lor 

a specific compiler and specified host and target systems, for which the full ACVC test suite was run as 

part of the on-site testing. The validated compiler for the specified hosl and target system is referred to as 

a "Base Compiler". 

In detail, the validation process consists of ten steps that must be successfully completed in order to obtain 

a Validation Certificate for a  Base Compiler.   These ten steps are explained  In Appendix A. 

S.   Ravalldatlon 

In order to preserve the status of a Base Compiler as a validated Ada compiler after expiration of Its 

Validation Certificate, the supplier must re-submit the compiler for validation prior to the expiration of the 

Validation Certificate. 

Such revalidations have a dual purpose: first, they guarantee that changes to compilers do not cause a 

gradual deviation from the language standard. Second, the ACVC test suite Is continuously enhanced to 

provide more comprehensive coverage of the language standard. The requirement of revalldallon Insures that 

compilers conform to the standard even In those areas that were not covered by the ACVC version that was 

In effect at the time the compiler was initially validated. 

It is expected that, as compilers and the ACVC gradually mature, the validity ol the Validation Certificate will 

be extended to two years,   thus  reducing the effort and cost ol  revalidations. 

7.   Status of Maintained Compilers 

Ada compilers will undergo maintenance changes and enhancements, in particular during the initial period 

after their first release. As It is economically and administratively infeaslble to require formal revalldallon 

after each change to a compiler, as well as undesirable to discourage maintenance upgrades by such a re- 

quirement, AJPO has adopted the policy that the validation status of a compiler automatically extends to its 

revisions. This policy relies on the mandate for annual revalidatlon to detect deviations from the standard 

and on the fact that It Is In the best interest of the compiler suppliers to remain conforming to the lan- 

guage standard. . 
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8.   Compllera for Multiple Configurations 

A particular problem with which compiler validation Is confronted is the issue of compilers for multiple host 

and target system configurations. Typical examples are compilers hosted on and targeted for system ar- 

chitectures that are compatible in their instruction set; for such compilers. It can be reasonably expected 

that a compiler tested on one such configuration will generally execute correctly for any other configuration 

within the family of these architectures. This expectation is more difficult to justify If there are minor dif- 

ferences In the Instruction set architecture or the operating system. A similar complication arises from 

compiler switches that influence execution characteristics of the compiler or the code generated by the com- 

piler. 

Clearly, It Is quite impossible to perform compiler validations for all host and target configurations for which 

a compiler is designed, and for all switch settings of the compiler, due to the combinatorial explosion of all 

permutations of these influencing parameters. On the other hand. It is equally impossible to decide with 

certainty whether these parameters will alter the outcome of validation testing without actually performing the 

test. In a strict sense. It is therefore impossible for the AVF to attest to the successful completion of the 

validation testing,   unless the tests are executed on the specific configuration. 

The draft validation policy addresses this issue by introducing the concept of a 'Registered Derived 

Compiler": A compiler supplier who has successfully validated a Base Compiler can register with AJHO ad- 

ditional compilers derived from this Base Compiler. Thus registered compilers are considered as equally 

validated compilers. This status Is tied to the validation status of the Base Compiler and expires with the 

expiration date of the Validation Certificate for the Base Compiler. A registered derived compiler can be 

marl(eted as a validated Ada compiler. 

As part of the registration process, the supplier has to assert that the compiler Is a - possibly modified 

- version of the Base Compiler and that the compiler conforms to the Ada language standard. AJPO or AVC 

may require substantiating information for this assertion, such as a hardware vendor's statement guarantee- 

ing the equivalence of the instruction set architecture or the results of running ACVC tests. However, final 

Judgement on trusting a Registered Compiler to pass ail applicable ACVC tests lies with the prospective 

buyer of the compiler. 

The AVO maintains the list of Registered Compilers. If, at some later lime, it is established that a Regis- 

tered Compiler does not pass an ACVC test that the Base Compiler passed successfully, the compiler will 

loose its status as a Registered Compiler, unless the supplier corrects the problem. Any such challenges, 

which may be brought to the attention of the AJPO by any current or prospective user of the compiler, will 

be noted in the list of Registered Compilers after ascertaining the validity of those challenges. 

The Intention of this policy Is to avoid the combinatorial explosion of formal validations, without requiring 

AVF or AVO to render Judgement on whether a compiler Is lil<eiy to pass validation testing on some host 

and target configuration without running the test suite on this configuration. It relies on the market place to 

force Registered Compilers to adhere to the language standard as well. Given that registration of compilers 

is dependent on the existence of an already validated Base Compiler by the same supplier, it Is reasonable 

to assume that any potential deviations of Registered Compilers from the language standard are minor, 
unintentional,   and easy to correct. 

9.   Life-Cycle Management of Validated Compilers 

The mandate for the use of validated compilers In projects is generally In conflict with the practice of 

baselining compilers for extended periods of time. Since the validation status of a compiler expires after one 

year, annual revalidatlon Is necessary. Due to changes In the ACVC test suite, it may be the case that the 

basellned compiler fails revalidatlon; an upgrade of the baseline would be required. f-"or project stability or 

contractual reasons,  such upgrades may be highly undesirable. 

A revised policy for the use of Ada compilers in DoD projects has therefore been drafted that reconciles the 

requirement for compiler validation with the need for baselining compilers. This policy Introduces the con- 
cept of a "Project-Validated Compiler'. 

A Project-Validated Compiler is a validated compiler that has been basellned In accordance with DoD life- 

cycle management policies.  Such a compiler maintains its status as a  Project-Validated Compiler throughout 
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the duration of the project. Only major system upgrades require thai the baselined compilers also be 

upgraded to Validated Compilers. The rationale of this project-specific extension of the validation status Is 

that, as the ACVC Is maturing rapidly. It Is very unlikely thai a validated compiler would exhibit grave devia- 

tions from the language standard. The benefit of preventing minor accidental deviations by enhancements to 

the ACVC Is low compared to the complications that arise from the risl< of forcing- an upgrade of the 

baselined compiler at inopportune stages of a project. Naturally, program managers are encouraged to plan 

for periodic upgrades of the baseline to a compiler with a Validation Certificate In effect. 

While the Ada compiler used during development of MCCR software is not required to be a Project-Validated 

compiler, the compiler used for the software delivered for operational testing must be a Project-Validated 

Compiler. The acceptance testing upon delivery of such software will ascertain that the compiler passes all 

applicable tests of an ACVC version equal to or, optionally, more recent than the version that was in effect 

at the time of basellning the compiler. Depending on the software volume, such testing may range from In- 

ternal testing to formal validation. The requirement for such testing is automatically satisfied if the compiler 

Is a validated Base Compiler. 

As a risk reduction strategy, project managers should consider using validated compilers as early as pos- 

sible In a project. Maintenance and enhancement revisions of these compilers should be periodically 

checked for conformance with the language standard by using the ACVC as the test mechanism, so that 

potential acceptance problems at the time of delivery of software for operational testing are  prevented. 

10.   Compilers for Embedded Targets 

Embedded targets pose another challenge to the validation process: such targets may not be able to ex- 

ecute the ACVC tests, due to lack of hardware, in particular of appropriate output devices; the hardware for 

such targets may not exist yet; the hardware may be so restricted that it cannot support the mandatory fea- 

tures of the Ada language standard. In all these cases, the validation process cannot be applied to the 

compiler targeted at the embedded system and, hence, no Validation Certificate can be Issued lor the com- 

piler. 

Since It Is nevertheless desirable to use compilers conforming to the Ada language standard in developing 

software for such embedded targets, the proposed DoD policy addresses this issue and arrives at a com- 

promise that alleviates the problem  and achieves the objective of conformance to the language standard: 

For many embedded systems, the application code is first developed using a 'simulated target", i.e., a 

simulator or an extended hardware configuration that provides more capabilities than the real embedded tar- 

get system. If the compiler for the simulated target Is a (project-)validated compiler, then the compiler lor 

the  real  embedded  target  is  also  regarded  as  a  project-validated  compiler,   provided  that 

1. the  compiler for the  real  embedded  target  Is derived  from  the  project-validated  compiler for  the 

simulated target,   and 

2. all   mandatory  features  of  the  Ada   language   standard   that  can   be   supported   by  the   real   target 

4.   any additions or changes to the  run-time support maintain  conformance of the  execution  of ap- 

plication code to the semantics of the Ada language standard. 

From the viewpoint of practicality, the compiler for the real embedded target and any run-time modifications 

are unlikely to deviate from the language standard In an Incompatible fashion (as opposed to a subsettlng 

of the run-time support) , since the application code translated by the validated compiler for the simulated 

target, on which the application code Is developed and tested, cannot differ significantly from the code 

produced by the compiler for the real embedded target. Otherwise such earlier testing would be rendered 

quite useless. Consequently, the conditions enumerated above are sufficient to ensure a maximum of por- 

tability and  reusability achievable for the application software. 
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11. The Economics of Compiler Validation 

Without doubt, the validation process Is expensive for the supplier of an Ada compiler and ultimately tor the 

user of such compilers, since the cost of validation v»ill be reflected In the cost of the compiler to the 

user. Typical AVF fees for the validation process are $12,000 to $15,000. Suppliers of validated Ada 

compilers have, however, estimated the total cost of a formal validation In the range from $50,000 to 

$100,000, due to the Internal cost of preparing for the validation. While this estimate seems high, given 

that the monitoring of results of running the ACVC tests should be accounted for as part of the Internal 

quality assurance for the compiler rather than of validation, a non-trlvlal effort Is spent on administrating the 

validation process, on conducting the on-slte testing, on making sure that the supplier's Interpretation of 

the applicability of individual ACVC tests conforms to the AVO's official position, and on adjusting the com- 

piler In areas where the AVO does not share the supplier's opinion. Extrapolating from these high es- 

timates, the cost of revalldation of a compiler Is likely to range from $25,000 to $50,000, provided that 

neither the compiler nor the ACVC test suite has changed significantly since the previous validation. Even 

for Registered Derived Compilers, the cost of ascertaining that the compilers Indeed are capable ot passing 

ail applicable ACVC tests can be substantial to the compiler supplier. 

For the user of Ada compilers, the economic benefits of using validated compilers can be considerable. 

First, the DoD mandate for using validated Ada compilers In MCCR projects makes It impossible to success- 

fully compete for DoD contracts without access to a validated Ada compiler. Second, for the user concerned 

with porting Ada software between systems, the use of validated compilers Is a first measure to reduce the 

cost of such porting by eliminating the problem with subset or superset compiler implementations. While 

compliance of compilers to the language standard Is not a panacea for solving the porting problem. It 

eliminates one of the major hurdles encountered  in the past with other languages. 

12. The Impact of Validation on the Ada Effort 

The requirement for validation has been blamed for the long delays In getting Ada compilers to the market 

place. Historically, the first compilers marketed for comprehensive languages such as COBOL or PL/1 

processed only subsets of the respective language, thereby enabling first experiences to be gained with 

these new languages before compilers for the full languages appeared on the market. This Introduction 

strategy Is a two-edged sword, however, since the subset compilers typically remain In use, thus creating 

significant porting problems. Furthermore, by the time compilers for the full language emerge, programming 

styles have been established that perpetuate a limited  utilization of the full capabilities ol the language. 

For Ada, DoD consciously decided on a strategy in which only compilers for the full language are accept- 

able for software development. Within this constraint, the availability of the ACVC has helped the Implemen- 

tors, by providing an extensive and well designed test set, as much as hindering them by forcing them into 

adherence to minute and sometimes pathological details of the Ada language standard and into the time- 

consuming  process of formal validation. 

By the end of 1985, more than 15 compilers were listed by AJPO as formally validated compilers, many ol 

which are hosted on and targeted to a variety of systems. A significant number of additional compilers are 

expected to be validated in 1986. it Is safe to say that the Ada effort is now past any Initial delays that may 

have been caused by the mandate to validate Ada compilers. 

The requirement of validation has also led to a situation In which compiler suppliers concentrate first and 

foremost on the task of obtaining validation status for their compilers, before concentrating on making their 

products sufficiently efficient and user-frlendiy to be viable tools In the development of Ada software. This 

situation must be considered a real danger to the casual public perception of the value of Ada compiler 

validation, as a validated compiler Is by no means guaranteed to be a compiler usable in real application 

programming. Therefore It cannot be emphasized enough that evaluation of Ada compilers for their respec- 

tive application domain remains a prime responsibility of the user. Validation can be one decision criterion 

In this evaluation,   but surely not the only one. 

Initial concerns about the combinatorial explosion of compiler validations with Its cost and probable scarce- 

ness of AVF availability should  be resolved  by the proposed  revised validation  policies. 

On the positive side, the requirement for validation has provided the user with an Initial screening ol the 

market  place for Ada  compilers:   since the  Investment for getting  an  Ada compiler Into a valldalable  state  is 
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very high, the market place has focused on the viable compiler suppliers likely to provide good products 

and continued product support. Moreover, the publicized list of validated compilers, and the Validation Sum- 

mary Reports (see Appendix A), which are publicly available, provide the user with valuable Information 

about the products offered In the market place. 

The validation process for Ada has raised the awareness of the suppliers as well as the users for the Im- 

portance of compliance of a compiler with the programming language standards. 

In the long run, DoD's persistence In Its "no dialects'-pollcy for Ada and Its validation requirement will have 

made a significant contribution to the portability of Ada programs and to the potential emergence of an Ada 

software component market which would be considerably less viable without such a standard. Compared to 

the cost reductions that can result from these facts, the cost of validation, especially when distributed over 

a large user base.   Is a minor expense that can be easily justified by the derived benefits. 

APPENDIX A 

THE TEN STEPS TO VAUDATION 

A.I.   Step 1:  Self-Testing 

The supplier of an Ada compiler must obtain a copy of the ACVC test suite for in-house testing of the com- 

piler. The test suite Is distributed by the AVF for a nominal charge covering the cost of distribution. The 

suppliers compile and execute the test suite using their compilers and, typically, will proceed to step 2 only 

when compliance of the compilers with the test suite has essentially been established. 

A. 2.   Step 2:  Notice of Intent to Validate 

The suppliers must notify an AVF that they wish to be scheduled for formal validation, and establish a con- 

tract with the AVF for Its services. The AVF will schedule validations on a first-come-tlrst-served basis. It is 

therefore advisable for suppliers to contact an AVF as early as possible, once a target date for full com- 

pliance with the test suite can  be internally established. 

In planning for the validation,   there are two dates that are of crucial  importance to the suppliers; 

;  the  expiration  date  of the  test suite  version  that the  supplier wishes  to  use for formal  valldatlonj 

and 

;   in the case of a revalldatlon,   the expiration date of the existing validation certificate. 

As there Is generally a 90-day lead-time for an AVF In preparing the formal validation, as well as potential 

resource constraints of the AVF due to other scheduled validations, suppliers must plan well In advance to 

complete the validation process before these two crucial dates. 

Formal validation testing with an already expired ACVC version is permissible only If a declaration of con- 

formity (see step 4) has been made by the supplier prior to expiration of the ACVC version and no test 

disputes that are pending are decided against the supplier's position. 

A.S.  Step 3:  Contract Negotiations with the AVF 

A formal contract needs to be negotiated between the supplier and the AVF, In which schedules and pay- 

ments to the AVF are agreed upon. As a major part of the work will be performed by the AVF prior to the 

on-site testing,   advance payments will generally be  required. 

A. 4.   Step 4:  Declaration of Conformity 

The compiler supplier Is required to provide a Declaration of Conformity to the AVF. In this declaration, the 

supplier asserts that the compiler to be validated conforms to the Ada language standard. Implementation- 

specific  Information,   such  as  required  by Appendix F of ANSI/MIL-STD-1815A,   must be supplied to the AVF. 
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Furthermore, the results of running the ACVC tests on the compiler must be submitted to the AVK tor 

evaluation at least 60-days prior to on-slte testing, as well as a list of tests that the supplier believes to be 

Incorrect or Inapplicable to the compiler to be validated. 

The AVF will carefully evaluate the submitted material, resolve any test disputes and Issues In coordination 

with the supplier,  and prepare a draft test report. 

A. 6.  Step 6:  Resolution of Test Issues 

If the  supplier  and  the  AVF  disagree  on  test  methods  or the  applicability of tests,   the AVF  will   refer  these 

Issues to the AVO for a  binding decision. 

The   AVO  will   arrive   at  a   decision   within   two  workweeks   and  convey  this   decision   to  the  AVF.   The  AVO   is 

assisted in this process by the 'Fast Reaction Team*,  a group of Ada language experts. 

A. 6.  Step B:  On-slte Testing 

The AVF will conduct the conformity testing of the compiler al the location designated by the supplier. This 

test consists of running all applicable tests of the ACVC test suite. The compiler passes the conformance 

testing, if all tests are processed according to the language standard. A disposition on the outcome o( the 

on-site testing will,   however,   not be made until step 8  Is completed. 

A. 7.   Step  7:   Report Preparation 

The  AVF will   collect  and   evaluate  the   results   of  on-site  testing   and   then   issue   a  draft  Validation   Summary 

Report  (VSR)   within 30 days of the on-slte testing. 

A. 8.   Step 8:   Review of Draft Report 

The supplier, AVO, and AJPO recefve the draft VSR for concurrent review and comment. Any comments 

must be submitted to the AVF within two workweeks of receipt of the draft VSR. The AVF will then forward a 

final VSR to the AVO within two workweeks. If disagreements on the contents of the VSR arise, the Director 

of AJPO will decide after hearing arguments. 

A. 9.   Step 9:  Approval Review 

The  AVO  will   review  the  VSR  for   proper  reflection   of  all   comments   made   in   Step   8,   and   then   forward   the 

VSR to the Director of AJPO for signature. 

A. 10.   Step 10:   Issuing ttie Validation Certificate 

A certificate of conformity, called the "Validation Certificate", will be issued to the compiler supplier by the 

AJPO when the Director of AJPO has signed the VSR. This certificate lists the compiler and describes the 

configuration on which the compiler was tested on-slte by the AVF. The Validation Certificate and the VSR 

are then made publicly available.   The compiler Is added to the  list of validated compilers. 
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APPENDIX B 

THE ADA VAUOATION  FACIUTIES 

The following AVF are chartered by AJPO to perform Ada compiler validations. The ACVC test suite can be 

obtained from any AVF or directly from the Wright-Patterson Ada Validation Facility, which acts as the 

central  malntalner of the test suite. 

Wright-Patterson  Ada  Validation   Facility 
ASD/SIOL 
Wright-Patterson  AFB,   OH  45433-6503 
Tel!   (513)   255-4472 
Contact:   Georgeane Chitwood 

Federal Software Testing Center  (FSTC) 
Office of Software Development & Information Technology 
Two Skyline Place,   Suite  1100 
5203 Leesburg  Pike 
Falls  Church,   VA 22041-3467 
Tel:   (703)   756-6153 
Contact:   Arnold Johnson 

Bureau  d'Orlentatlon  dc la  Normalisation en  Informatique 
Domain  de Voluceau-Rocquencourt 
B.P.   105 
F-78153 Le Chesney,   FRANCE 
Tel:   33-3-955-2535 
Contact:  Jacqueline SidI 

lABG-AVF 
Industrleanlagen-Betrlebsgescllschaft  (lABG) 
Dept.   SZT 
EInstelnstrasse 
D-8012  Ottobrunn,   Fed.   Rep.   of Germany 
Tel: 49-89-6008-3090 
Contact;  Helmut Hummel 

Ministry of Defense  (PE) 
EQD  "Aqulla" 
Golf  Road 
Bromley,   Kent BR 1   2JB,   United  Kingdom 
Tel:   01-467  2600   (Ext.   6056) 
Contact:   Kevin  E.   Phillips 
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Summary 

This paper examines two aspects of using Ada for the impiementatlon of large program systems. Kirsl, 

those elements of the Ada language that are particularly targeted at programming in the large are dis- 

cussed. Conclusions about appropriate design methodologies that match these language features are 

presented along with an explanation of some potential problems. Second, an overview of efforts to develop 

programming support environments for Ada beyond the Ada compilation system is given. The rationale and 

the scope of on-going standardization work in the area of Ada Programming Support Environments (APSE) 
Is presented. 

Preface 

A necessary prerequisite for using Ada as the Implementation language in a project is the availability ol Ada 

compilers. At the end of 1985 more than 15 Ada compilers had been validated on a variety of host and 

target systems (1). Hence, at present, there Is a significant number of Ada compilers available to 

prospective users of Ada. The focus for satisfying prerequisites for the successful applicalion of Ada is 

gradually shifting to the software environments around the Ada compiler. 

Given a high-quality compiler, the productivity of software designers and programmers depends to a very 

large degree on the properties of the software development environment. While this is true for any lan- 

guage, it has been specifically acknowledged in the Ada program: considerable efforts are spent to address 

the Issues and  Improve the quality of software environments. 

In this paper, we concentrate on two aspects of the software environment for Ada: first, we discuss some 

properties of Ada that impact environment issues and programming in the large. Then we present 

U.S. Department of Defense (DoD) and industry efforts towards evolving software environments in support of 
projects using Ada. 

1.   Program Structure In Ada 

Historically, programming languages and their compilers supported the programmers by translating individual 

modules, but failed to enforce interface conventions across module boundaries. Violations of these conven- 

tions were discovered in part at link-time and In part during testing by exploring the causes of incorrect 

program execution. In some languages, e.g., Pascal, C, and Pearl, the missing facility (or consistency 

checking across module boundaries was added in subsequent language revisions or by language extensions 

of Individual compilers or by tools of the programming environment that analyze the interdependent modules 
for possible inconsistencies. 

The Ada language design has been guided by established principles that facilitate programming in the large 

(2,3). It supports the structuring of program systems into units, each ol which can be compiled separately 

from other units with which It interfaces. The mechanisms for enforcing the consistency among separately 

compiled units are an Integral part of the language. The rules of the Ada language for consistency checks 

across compilation unit boundaries are as if all units involved were translated in one monolithic compilation; 

unit  boundaries  have  no  Influence on  the strength  and  nature of the checks.     Thus,   dividing   large  program 

Ada is a registered trademark of the United States Government, Ada Joint Program Off tee 
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systems Into many units according to some structure Induced by the applied design methodology carries no 

penalty In  terms of the compiler support for the early detection of errors  In the program. 

In the Ada language, separately compilable units come In two flavors: A unit can be a specification unit, 

which describes only the programatic Interface presented to users of the unit, or It can be a "body", which 

Implements the details of an associated specification. Separately compilable specification units are called 

"library units" and their bodies are referred to as "secondary units", as Ihey require the existence of primary 

specifications that describe their interface presented to other units. 

Library units are individual packages, subprograms and tasks; such packages and subprograms may bo 

generic, i.e., they describe an entire family of closely related packages and subprograms. Secondary units 

are the corresponding package bodies, subprogram bodies and task bodies. Packages are used to group 

logically related specifications, definitions and declarations. Specifications ol packages, subprograms and 

tasks can also be nested within other units, and their bodies can be segregated into so-called "subunlts" 

that can  be separately compiled  as secondary units. 

Any specification unit can be viewed as a contract between the provider and the user ol the services offered 

by the unit. The rules of the language guarantee that neither the user (I.e., another unit) nor the im- 

plementor (i.e., the body for the specification) of such services can violate the programatic interface 

described by their specification. Moreover, the details of the implementation are hidden from the user of 

the service, thus guaranteeing that the Implementation can be changed without affecting the validity of the 

programatic Interface presented to the user. In more technical terms, interfacing is allowed only to 

specification units, which contain all the Information required for checking the consistency of references that 

cross unit boundaries. Additional features of the Ada language, such as private types, permit the hiding of 

data representation defined in the specification of a unit, so that users of the service cannot Inappropriately 

take cognizance of representational details that are to be considered implementation-dependent (but 

generally are  needed  by the compiler In translating dependent units) . 

The described elements of the Ada language, which provide global structure in Ada programs, allow a 

variety of development strategies. Bottom-up development Is supported in the sense that already Implemented 

library units can be used to provide the building stones to construct additional library units and their bodies. 

Top-down development and stepwise refinement Is supported in a dual fashions first, the separation of 

specification and body for each library unit makes it possible to postpone the Implementation o( a unit and 

base all compilations of dependent units on the specification alone. Second, within secondary units, the Im- 

plementation of locally declared packages, subprograms and tasks can be separated into subunlts without 

Impacting the capability to compile any units dependent on the units whose Implementation is thus delayed. 

It becomes possible to code and compile programs whose underpinnings have been specified but not yet 

Implemented. 

Generally, the compilation of a unit cannot depend on a secondary unit. Exceptions to this rule are sub- 

units, which depend on the secondary units within which their specification is provided, and compiler- 

Introduced dependencies on secondary units. The latter may arise for the Instantiation of generic units, if 

their bodies are expanded In place, for calls on Inline subprograms, and for optimization-related reasons 

among units that are submitted in a single compilation. 

Within the limitations of these exceptions, the clean separation of the Implementation from the specification 

permits arbitrary replacements of secondary units to be made without affecting any dependent units, since 

such replacements must be in conformance with their respective specifications. This freedom has significant 

advantages for a top-down development, since defaulted bodies can be provided for units not yet Imple- 

mented. With such defaults, the program can be brought to execution as long as the defaulted entitles are 

not referenced in a way relevant for the results of the execution. Later, the defaulted bodies can be 

gradually replaced  by their true Implementation with a  minimum of recompllatlon effort. 

in practice, software development Is often a mixture of top-down design and subsequent bottom-up im- 

plementation combined with corrections to the original design. The decribed features of the Ada language 

are ideally suited to support bottom-up and top-down strategies as well as a mixture of the two approaches. 
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2.   The Ada Program Library 

In order to achieve consistency checking across compilation boundaries, the compiler must retain Infor- 

mation about the separately compiled units. This capability Is provided by the use of the "program library" 

v/hlch contains the required Information about compiled  units. 

The language rules require that each unit begins with a Indication of all units on which it depends. This 

specification Is called a "context clause". Based on the context clause, the compiler retrieves the stored 

Information about the referenced specification units, uses this information for the compliatlon at hand, and, 

for each reference to an entity in such a unit, performs the required consistency checks the ensure the 
legality of the reference. 

The concept of separate compilation requires that all units on which a given unit depends have been com- 

piled prior to the compilation of that unit. Consequently, mutual dependencies of compliatlon units cannot 

be accommodated. Since dependencies generally exist only with respect to specification units. It Is 

nevertheless possible that the Implementation bodies of two units depend on the specification of the respec- 

tive other unit. For example. It Is not permissible that two specification units, A and B, reference each 

other; It Is however possible that the body for A references the specification of B and vice versa. In terms 

of a design methodology, this restriction Implies that mutually dependent definitions must be provided within 

a single package. It applies In particular to type definitions In package specifications, since establishing 

the representational details of types cannot be postponed to the compilation of the package body for reasons 
of compiler implementation constraints. 

During software development, compilation units will be subject to changes, which may affect the validity of 

other compilation units that depend on the altered unit. Most programming languages leave this aspect o1 

the software development process entirely up to the user or to tools provided by the language environment. 

The Ada language. In contrast, requires that the compilation system recognizes this potential danger and 

prevents the occurrence of inconsistencies introduced by a change. The mechanism for doing so is also 

embedded In the program library. It records the dependencies between compilation units and, upon recom- 

pilatlon of a unit, recognizes the fact that dependent units are now potentially Inconsistent and may have to 
be recompiled. 

A further application of the recording of dependency information Is that the Implementations of the program 

library are capable of retrieving the exact set of units needed to bring a given main program to execution. 

By transitively accumulating the units and their bodies on which the main program depends, any superfluous 

units contained  In the library will  be omitted from the linked  Image of the program. 

With the requirement for the existence of a program library that tracks dependencies and the effects o( 

changes, the Ada language goes beyond the nature of a mere Implementation language. It attempts to ad- 

dress some of the problems that historically have been In the realm of software environment tools, i.e., 

version and configuration management tools. There can be no doubt that these rules of the Ada language 

will provide a maximum of safeguards against inadvertent errors in maintaining system consistency in the 
presence of changes. 

The requirements posed by the language standard on the capabilities of the program library in this area 

are, however, rather rudimentary. They merely require that, after compilation of a unit, any previously 

compiled unit that Is affected  by the change to this unit must be treated as If It were as yet uncomplled. 

An implementation of the Ada program library that satisfies only the minimal requirements imposed by the 

language standard is likely to create some difficulties for the users, unless a very rigorous programming 

discipline is enforced. The reason for such difficulties lies in the above rule which. In a unsophisticated 

Implementation of the Ada library, will cause all compilations to obliterate the results of previous compila- 

tions of dependent units. Hence, a minimal change to and recompllatlon of a specification unit can cause 

many hours of additional rocompllatlons for units that depend on the changed unit, even though the change 

may have had no real effect on them. The most pathological example of such a change Is the addition of a 

comment to a specification unit. A compilation system that Is not capable of recognizing the Irrelevancy of 

this or other changes on the consistency of the compilation results for dependent units will have to require 

a recompllatlon of all dependent units. The undeniable advantage of strict enforcement of consistency by the 

recompllatlon rules can be quickly negated by the loss of productivity due to delays caused by such un- 
necessary recompilatlons. 
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As many Ada compilation systems will not possess the sophistication of analyzing changes with regard to 

their effects on dependent units, the methodology employed in the utilization of these systems for the 

development of Ada software must compensate for this lack. It must ensure that changes to specification 

units on which many other units transitively depend are minimized. The same holds, to a lesser extent, for 

changes to units that have subunits. Fortunately, this constraint is consistent with good software design 

and development practice that stabilizes central Interfaces as soon as possible and performs a rigorous 

change control on these Interfaces. Generally, bottom-up Implementation strategies, following a detailed 

top-down design, will provide the best match with the properties of unsophisticated implementations of the 

Ada program library mechanisms. 

The requirements on the Ada program library do not address the problem of parallel versions of units in 

multiple configurations of an encompassing program system. The solution to this problem, as It may be 

provided by environment tools. Is somewhat constrained by the necessity to co-exist with the rules of the 

Ada program library. A typical scenario during software development is that new versions of some compila- 

tion units are installed for experimentation purposes. If these new versions have led to recompllallons of de- 

pendent units, then reverting to the Initial state after completion of the experiment Is not possible without 

another recompliatlon of these dependent units. Short of an Ada program library that is fully Integrated into 

a version and configuration control system, the only alternative for preserving the initial slate consists in the 

creation of a new program library for each such experiment. It Is therefore crucial that such creation of 

program libraries be possible with a minimum of effort and resources and a maximum of sharing with exist- 

ing libraries. Again, the minimal requirements imposed by the Ada language standard do not address this 

Issue. 

Finally, It should be noted that the Ada language rules regarding the program library refer only to the 

results of compilations, but not to the Input to these compilations. That is, the program library need not 

administrate the Ada source flies, it is merely concerned with the Internal representation of the compilation 

units as required by the separate compilation capability, and with the generated object code, it Is not 

necessarily a source control system, nor Is It required to support dependencies other than compilation 

dependencies,  such as for example the interrelation between source code and documentation files. 

It is entirely possible that the productivity of Ada software implementors will be influenced by the quality and 

functionality of the Ada program library at least as much as by the quality and speed of the Ada compiler 

Itself, it Is therefore of utmost Importance that the software design and development methodology and the 

strategies for version and configuration control be In unison with the capabilities of the employed Ada 

program library, and that the program library mechanisms Integrate well with software environment tools 

beyond the Ada compiler. 

Despite all the caveats expressed in the preceding paragraphs, a reasonably sophisticated implementation of 

the Ada program library that supports functionality beyond the minimal requirements imposed by the Ada lan- 

guage standard can be an extremely powerful tool, in large application systems, errors that are caused by 

minor Interface Inconsistencies are very difficult to locate. The required capabilities of the program library 

prevent the occurrence of this class of errors. With only a moderate addition of functionality to the Ada 

program library, tedious and traditionally error-prone tasks, such as the recompliatlon of changed sources 

and ensuing recompliatlon of dependent but unchanged sources, can be totally automated and performed 

without errors, since the required Information Is directly derived by the compiler from dependency infor- 

mation  In the  program  library. 

3.   Programming Support Environments 

For software engineers and programmers to be effective, the provision of an Ada compilation system alone 

Is clearly not sufficient. They require additional tools, such as editors, debuggers, version and configuration 

management tools, network file-transfer tools, project management tools, and so on. The collection of 

these tools  is generally referred to as a  "Programming Support Environment (PSE)". 

Some of the tools in a PSE are heavily language-dependent, for example the compilers, syntax-directed 

editors, program analyzers, symbolic debuggers, performance monitoring tools, etc. These tools need to be 

developed for any implementation language. Other tools are language-independent, such as file-transfer 

mechanisms, project administration tools, documentation systems, test harnesses, etc. Where available, 

these tools can  be applied  in a  project regardless of the chosen  Implementation  language. 



Since the early stages of the Ada effort, considerable attention has been focused on the PSE for Ada and. 

In the process, on issues of language-dependent and -Independent environment support In general, be- 

cause the state of the art In this area Is In its infancy despite Its recognized Importance. Unlorlunately, 

this attention has led some observers to the misconception that Ada requires substantially more environment 

support than other languages or, worse, cannot be used at all without a complete environment specifically 

developed tor Ada. 

In reality, Ada has been used as a focal point of plans for improvements in software engineering and PSE 

technology, which are direly needed regardless of the choice of implementation language. It could even be 

argued that Ada may require less environment support than other languages, due to Its high degree of 

compiie-time error checl<ing. Its enforcement of implementation discipline, and the environmental aspects of 

the program library. There is certainly little reason to believe that Ada could not be supported in more 

traditional environment settings. Currently, the majority of commercially available Ada compilation systems 

are not embedded in an Ada-specific PSE, but are Integrated into the standard PSE available on the 

respective host systems. 

3.1.  The DoD Requirement Catalogues 

In early 1978, first efforts were made within U.S. DoD to arrive at a concept for the development of the 

environment support for Ada. A set of initial Ideas were first collected In what became known as the 

SANDI^AN catalogue, which was never published. By late 1978, it was consolidated irilo a requirement 

catalogue, named PEBBLEMAN, in which the desired functionality and cooperation of various tools were 

described. A revised version of PEBBLEMAN was published In 1979 (4). in February 1980, a further docu- 

ment, STONEIVIAN, was produced; It became one of the most cited references regarding Ada environments 
(5). 

In addition to posing requirements for the desired tools In a PSE, STONEIVIAN Introduced a model for "Ada 

Programming Support Environments (APSE)", which addressed both the Issues of tool integration and of 

portability of the entire APSE as well as of Individual tools or tool-sets. The term "APSE" has since become 

a synonym for the concept of integrated toolsets for Ada, as opposed to the so-called "tool-box" approach 

In which a set of Independent tools Is  provided to the user. 

Part of the motivation behind the STONEMAN model was the recognition that the general Immaturity of cur- 

rent PSE Implementations is not caused so much by the non-existence of powerful tools as by the missing 

capability to bring existing tools together on a single host system and integrate them with each other to 

form a coherent and efficient PSE. Consequently, the development of a PSE becomes unnecessarily expen- 

sive, as many tools are relmpiemented although similar and, quite possibly, better tools are already avail- 
able in  other environments. 

One might surmise that the enhanced portability of tools written in Ada would solve the portability problem. 

However, while the Ada language standard provides portability advantages In many areas, it must be recog- 

nized that most tools require a significant amount of interfacing with the host operating system. The Ada 

standard, which is primarily intended for the generation of application code for arbitrary target systems, 

could not justifiably prescribe the details of those language features that are Intimately United to operating 

system Interfaces, fy/loreover, the requirements of application code on operating system services have been 

recognized to be quite different from those of PSE. This is due partially to the different problem domains 

and partially to the dynamic nature of evolving PSE as opposed to the relatively static nature of operational 
application systems. 

Consequently, some standard interfaces suitable for application programming might be quite inappropriate lor 

PSE development. Given that the Ada language leaves the details of operating system interfaces, such as 

calls on the file management or on terminal ID services, largely Implementation-dependent, the porting of 

tools written In Ada will nevertheless have to contend with modifications of these host-dependent portions of 
the software. 

The STONEMAN model postulates a system architecture in which the host dependencies and the tool inter- 

communication are encapsulated In a Kernel APSE (KAPSE) . The individual tools of the APSE are built on 

top of the KAPSE services. Since the Interfaces offered by the KAPSE are conceived to be host- 

Independent, and since the Ada language goes to great length in facilitating the portability of Ada software, 

tools could   be written   in Ada to  be  portable among  different hosts offering  the same  KAPSE services.   Port- 
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Ing of an entire APSE to a new host consists of re-lmplcmenllng the KAPSE on the new host. Further- 

more, Individual APSE tools could be transferred to another APSE as long as the tool Intercomnnunicatlon 

Interfaces needed by these tools were provided by this APSE. Sonrie tools are so heavily dependent on In- 

terfaces with other tools that It Is unreasonable to expect that all such Interfaces are provided on each 

KAPSE. These tools cannot be ported Individually; they form an tightly Integrated tool-set. By relying only 

on the common mechanisms for tool communication provided by the KAPSE, but not on the specific details 

of the communicated  Information,   such combined tool-sets could equally be ported to a new APSE. 

STONEMAN established a set of requirements for the services that must be provided by the KAPSE in order 

to reach the described goals. These requirements relate in particular to the data administration and com- 

munication Interfaces needed by tools, and to the run-time system that enables the execution o( Ada 

programs. STONE-IVIAN adopts the paradigm of distinguishing host and target systems. It postulates that 

software development, in particular for embedded targets, needs to take place on a host system sufficiently 

powerful to accommodate the various tools required for supporting the development and maintenance of 

software throughout its life-cycle. 

Among the many conceivable tools of an APSE, STONEMAN identifies a minimal set perceived to be neces- 

sary to make an APSE an effective tool for software developers and maintalners. This set was designated as 

the Minimal APSE (MAPSE). It comprises the Ada compilers, linkers and loaders, simple static program 

analyzers and debuggers, text editors and pretty-printers, a file and configuration management system, and 

the command interpreter. 

The STONEMAN principles were readily accepted by the majority of efforts concerned with the development 

of a PSE for Ada. In particular, the emphasis of STONEMAN on the provision of better data administration 

capabilities than offered by the file management of traditional operating systems has been reflected in almost 

all major PSE developments. While some of the details of the STONEMAN requirement catalogue may re- 

quire revisions In the light of experience gained since 1980, the fundamental principles are slili valid con- 

tributions to the area of PSE design. 

3.2. APSE Implementations 

Within U.S. DoD, two major developments of Ada Programming Support Environments were procured: in 

1980, the U.S. Army initiated the development of the Ada Language System (ALS) with SofTech, Inc., as 

the lead contractor (6); In 1981/82 the U.S. Air Force contracted with Intermetrics, Inc., for the develop- 

ment of the Ada Integrated Environment (AiE) (7,8). initial plans called for the ALS to be an Interim tool- 

set for the Introduction of Ada, while the AIE was Intended to be a STONEMAN-conformIng integrated en- 

vironment and to eventually become a standard  OoD Ada environment. 

The developers of the ALS adopted many of the STONEMAN principles In their implementation strategy, such 

as utilization of a KAPSE-IIke kernel to facilitate the porting of the ALS, which has been developed on a 

VAX/VMS host system. In December 1983, the first version of the ALS was made available to prospective 

users. The seif-hosted Ada compiler of the ALS was validated in December 1984. The ALS comprises a set 

of about 75 tools to be used In software development and maintenance. The development of the AIE, whose 

Initial design promised a superior Integrated environment, encountered serious funding problems; at present, 

it Is extremely doubtful that a comprehensive AiE will  become available in the foreseeable future. 

The U.S. Navy decided In early 1985 to base their Ada environment efforts on the ALS and to enhance this 

environment by additional tools and by code generation capabilities for the prevalent instruction set architec- 

tures in use by the Navy. This extended ALS has been named "ALS/N' and Is expected to become available 

In early 1989. 

The German Ministry of Defense, Bundesamt fuer Wehrtechnik und Beschaffung, began the procurement of 

components of an Ada software environment, named SPERBER (Standardlslerles Programm-Erstellungssystem 

fuer den Ruestungsbereich) in 1979 (9) . Major efforts have been directed at developing Ada compilers, 

debuggers, and a program development data base system. The first two compilers were validated In Novem- 

ber 1984. The British Ministry of Defense In cooperation with British industry co-financed several design 

efforts towards the development of software environments for Ada (10, VI). The Commission of European 

Communities, under its multi-annual program to advance the European software technology In the commer- 

cial sector as well as under the ESPRIT program, has co-financed several multi-national projects developing 

Ada programming support environments,   most notably the PAPS project (11). 
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Commercial suppliers have been somewhat reluctant to embark on a course ol providing Integrated Ada Pro- 

gramming Support Environments, recognizing that such Integrated solutions, while desirable In principle, 

constitute a truly major capital investment. Moreover, customers who have built a considerable wealth of 

software to support their In-house software development are concerned with preserving the usefulness of this 

software for future development projects using Ada as the implementation language. The challenge to com- 

mercial suppliers Is to provide Integrated environments that nevertheless allow the Inclusion or easy tran- 
sltloning of existing tools. 

Apart from ALS, which Is also commercially marketed by SofTech, Inc., only the Ada Development Environ- 

ment (ADE), marketed by ROLM Corporation (12), and the Rational Environment, marketed by Rational, can 

be regarded as largely integrated Ada Programming Support Environments. The Rational Environment takes a 

quite unique approach! its host system has been specifically designed for the development and execution of 

Ada programs. The entire environment is exclusively centered around Ada. IVIany of the language concepts 

are Immediately reflected In the concepts of the environment whose command language is Ada. Other com- 

mercial suppliers of Ada compilation systems have taken the path of embedding their systems into the en- 

vironments offered by existing operating systems, so that users could continue to utilize the tools which 
which they are most familiar. 

4.   Environment Standardization Efforts 

The more the software development process Is assisted by tools of a programming environment, the more 

difficult it becomes to transition software developed in one environment to a different environment. The cur- 

rent practice in military procurement of mission-critical software is that this software is developed by con- 

tractors but maintained In military maintenance centers. Just as a proliferation of implementation languages 

raises the cost of such maintenance considerably, so does a proliferation of software environments needed 

to maintain the software even in a single language. It Is therefore in the interest of DoD to minimize the 
proliferation of environments in  Its maintenance centers. 

Hero, DoD is faced with a dilemmai while language research was advanced enough to embark on the 

standardization of a single language, Ada, today's slate of the art in environments Is much less mature. 

Therefore rigorous standardization on a single environment may be III advised, as considerable advances in 

the environment technology can  be expected to occur in the next decades. 

A compromise can be found within the framework of the STONEf^AN model. If commonality of KAPSE Im- 

plementations were advanced by standardization at this much lower and less ambitious level, tools used in 

application development could be transltloned Into existing maintenance environments, thus reducing the 

number of necessary environments while, at the same time, continuously enhancing the support provided of 
these environments. 

4.1.  The Kapse Interface Team  (KIT) 

When It became apparent that there would be two competing designs of KAPSE Interfaces for the ALS and 

the AIE respectively, a Memorandum of Agreement was signed in January 1982 between the U.S. Army, Air 

Force, and Navy to work towards establishing commonality of the KAPSE interfaces in DoD environments 

(13). Under the lead of the U.S. Navy, the KAPSE Interface Team (KIT) was created and chartered with 

this task. The KIT Is assisted by an advisory group of software environment experts from industry and 

academla with International representation, the KITIA (KIT - Industry and Academla) . The objective of 

KIT/KITIA was set to establish requirements for the interoperability and transportability of tools among APSE 

and to subsequently develop guidelines and conventions for achieving these requirements with the uillmalo 
goal of evolving standards  in this area  (14). 

KIT/KITIA has been meeting quarterly since 1982. The results of its deliberations are contained in poriodi- 

cally published reports (14). Among Its most relevant products are the "Requirements and Design Criteria 

for the Common APSE Interface Set (CAIS)" (15), and the proposed -Military Standard Common APSE Inter- 

face Set- (16), which Is an initial set of KAPSE-like interfaces for the encapsulation of host dcpondoncios. 

At this time, the later document is being reviewed by the DoD services for adoption as a military standard 
within DoD. 

While the initial motivation of achieving commonality between ALS and AIE has decreased, due to the les- 

sening   importance  of the AIE,   the  KIT/KITIA effort has  been   recognized  as  an   Important contribution   to  ad- 
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vance the knowledge In the area of KAPSE-iIke Interfaces and of Issues of tool portability and Intor- 

operablllty. It also creates a forum for Information exchange between DoD and Industrial efforts, thereby 

preserving the opportunity to prevent a complete divergence of these efforts. 

4.2.  The Common APSE Interface Set (CAIS) 

In late 1982, a KIT working group began examining the ALS and AIE KAPSE Interfaces for areas of com- 

monality and of divergence In order to establish a common set of Interfaces that could be supported by both 

KAPSE designs. In March 1983, this group was Joined by several KITIA members to form a group that later 

became known as the CAISWQ (CAIS working group) . With the participation of the ALS and AIE designers, 

this group began developing the specification for a set of common interfaces deemed important for the por- 

tability of tools. A crucial design decision was made In mld-1983 to pursue an Interface set that was not 

constrained by the current environment efforts of ALS and AIE, although much of the practical experienco of 

these and  other similar efforts  Influenced the choice of Interfaces. 

The main goals of the CAISWG were to develop Interfaces based on a simple, yet powerful and extendlble, 

model, to apply uniform concepts throughout the design of the Interfaces, and to cover those Interfaces that 

are most crucial for the portability of many tools. A first public review of the concepts of the CAIS took 

place In September 1983. Various revisions were produced and publicly reviewed until. In January 1985, the 

final document was delivered to AJPO as a proposed  military standard. 

The CAIS in Its present form contains Interfaces for the administration of files, their Interrelations and at- 

tributes, for process administration, and for terminal ID targeted at three standard kinds of terminals. Some 

other utilities frequently used by tools are also present. The CAIS design for the file administration has 

departed from the traditional view of hierarchical file systems and instead administers flies by their interrela- 

tions, in this regard, the CAIS cautiously ]oins a trend that has been apparent in almost all recent designs 

of PSE. Special attention has been paid to security aspects, so that the CAIS would not be in conflict with 

requirements posed by DoO (17). The concepts and the set of interfaces provided by the CAIS are open- 

ended. It Is expected that additional interfaces will be added to the CAIS and that the existing global con- 

cepts are sufficiently flexible to accommodate a large variety of such extensions. 

It was realized that the work of the CAISWG could be only a first step In defining a basic set of uniform In- 

terfaces. The U.S. Navy contracted with SofTech, Inc., In 1986 for the further enhancement of the CAIS 

beyond this Initial set and for a pilot-implementation of the CAIS to validate Its usefulness and efficiency. 

Other pilot-Implementations of major portions of the CAIS have been undertaken by TRW, Inc., under 

government contract,   and  by Gould,   Inc.  and MITRE Corporation,   as Internally financed  projects. 

S.   Future Benefits of APSE 

As various studies have shown, the demand for application software is rising exponentially over time, while 

the workforce engaged In producing this software is growing at a slow linear rate. Already the demand is 

far beyond the production capability. In addition, the complexity of the software has increased considerably, 

making the production of quality software more and more difficult and time-consuming. Without substantial 

improvements In the software development process. Industry will not be capable to meet the increasing 

demand   nor will  it  master the  growing  complexity of this  process  in  the future. 

Four factors can  have a major Impact on ameliorating the current situations 

; Application of better methodologiesi Ada Is a first step to Improve the methodological basis at 

the Implementation level. Clearly, better methodologies or Increased application of already avail- 

able methodical approaches for requirement analysis and specification are necessary as well. Al- 
most certainly, these approaches will be supported by software tool-sets. APSE can provide the 
vehicle for a wider penetration of these tool-sets and associated methodologies. 

; Provision of better tools i Today the portability and Integration problems of tools lead to a dead- 
lock situation. For lack of portability, the development of truly sophisticated tools is expensive 

and commercially risky; It therefore remains largely in the realm of proto-types developed In 
academla. For lack of commercially available tools, software developers are forced to expend 

their resources in the duplicating development of tool support, which, because of the resulting 

financial constraints, continues to be of low quality. Improvements In portability and Integration, 
as  possibly provided  among APSE,   can  release  resources for the development of more advanced 
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and better tools as well as widen the commercial market for such tools. 

; Use of standard components: similar to the hardware manufacturers, software producers will In- 
creasingly have to rely on reusing pre-fabrlcaled components In order to meet the rapidly ex- 

panding volume of the software demand. Within the framework of an application-oriented Im- 
plementation language, whose major goal is the enhancement of software portability, Ada is an 
almost Ideal  breeding ground for such standard components. 

; Automated generation of customized components! a leading edge In hardware research Is con- 

centrating on the development of systems for the fast production of customized components. A 
similar approach can be expected to emerge In the software field as well. In fact. In some spe- 

cialized areas, e.g.. In compiler construction, the automated generation of components that are 
customized to particular languages or target architectures has already been successfully applied 
in commercial products. Again, APSE may provide the means for a wide distribution of such 
software-generating tools. 

Of ail these factors, the last two are likely to be the most important ones. As long as application software 

is developed from scratch, whatever Improvements In tool support can be provided to the software 

developers will Increase their productivity only by some constant multiplying factor. Significant as this factor 

may be. It will not be sufficient to catch up with the exponentially developing software demand In the long 

run. The only hope to match the ascending curve of demand consists In an ever increasing reduction of the 

amount of work to be performed to produce products. Only the utilization and Increasing availability of stan- 

dard components or of automated generation of customized components can lead to this reduction. Ada 

and APSE can play a major role In meeting these challenges. In particular, if the promise of Increased 

portability of tools and software components among  partially standardized APSE can  be realized. 
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Summary 

This paper describes some of the experiences gained to-date from an Ada research 
programme, undertaken within the Plessey Company in the U.K., by the author and his team. 
This programme is investigating the cost-effective and beneficial introduction of the Ada 
language for Defence-related (mostly real-time) software applications. Particular 
emphasis is placed upon minimising the risks and maximising the benefits for large and / 
or embedded microprocessor-based systems. Within the context of this largely practical 
work programme, the paper identifies a number of key concerns within the team (and it is 
suggested within industry at large) in making the transition to Ada. Also, some 
suggestions for improving the application of current Ada compilers and tools is provided 
to the vendors of these products. 

Introduction 

Clearly, in order to obtain the longer term benefits claimed for the Ada language, it is 
first necessary for any commercial organisation to be able to bid for and implement Ada 
projects both profitably and at minimum risk. This can only be done with confidence (at 
least for fixed-price contracts) when that organisation has already implemented 
representative" Ada projects, so that it can draw upon real experience of the technical 
issues involved. Only then can it, for example, reliably establish criteria for 
estimating project timescales and costs, and define appropriate standards and procedures 
for Ada-based developments. 

In general, for large and complex (especially real-time embedded micro-processor based) 
systems, for which Ada is intended, the risk of using Ada ahead of gaining such real 
experience may well be too great. Further, although the introduction of Ada may go 
hand-in-hand with improved software engineering practices, it would be inappropriate to 
ignore the often large existing investment in non-Ada software and systems products (and 
the associated manpower skills, working practices, equipment etc.) in favour of some 
totally new, unproven development scenario. 

Instead, the situation demands an optimum (transition) solution for which on the one-hand 
changes to the status quo are minimised, while on the other hand the potential benefits 
of Ada and associated development methods are maximised. 

This paper reports on some of the practical experiences gained to-date from an Ada 
research programme which was set up to address this problem. 

Ada Research Programme 

The programme was set up as a 'virtual' project, involving a hybrid mix of practical 
study activities and real Ada software developments. This project is ongoing and 
involves multiple study teams with distributed interests, thereby ensuring a broad 
approach to the problem. 

Given that the coding phase of projects typically equates to only 10% of the overall 
development effort, it is clear that the real value of Ada will come not from the direct 
characteristics of the language itself but from the catalytic (secondary) influence upon 
exLine""^''^ engineering methods employed.   Thus, the following issues are being 

i. the appropriate time-frame for introducing Ada, 
ii. the impact of Ada upon the overall development lifecycle, 
ill. the necessary standards and procedures (Project Management Baseline), 
IV. the anticipated effort / cost - time profile for Ada projects, 
V. constraints upon the design and implementation of products, and their expected 

characteristics, *■ 
VI. operational aspects (eg appropriate development environment). 

Ada IS a registered trademark of the U.S. Government (Ada Joint Program Office) 
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Within this context, the programme focusses upon the production of Ada demonstrators for 
gaining practical experience of Ada, to demonstrate representative Ada-based software 
systems actually working, and to allow ancillary studies eg into code size and 
performance issues. The work is complemented by a series of across-application studies 
to check the consistency of the results and their applicability to varied applications. 

Three demonstrators are currently being worked upon: 

A Digital Telephone Exchange Demonstrator 

This system implements the complex multi-tasking activities associated with setting up, 
supporting, and terminating, one or more concurrent two-party telephone calls from 
Digital Voice Terminals (DVTs). The system supports a variety of facilities eg system 
configuration, abbreviated dialling, diversion of calls, call pre-emption etc. 

The system is a conversion of an existing product which was developed using the "Modular 
Approach to Software Construction, Operation and Test (Mascot) [1]", and implemented 
using the Coral 66 language. The majority of the new system preserves the existing 
Mascot design (excluding the Mascot 'machine' concept, which supports primitives such as 
operations on control queues for synchronising access to shared data areas). The 
required system functions were then manually re-implemented using the full features of 
the Ada language. In contrast, the man-machine interface (MMI) sub-system is both newly 
designed and implemented and this serves as a test case for studies into Ada design 
methods. 
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Figure 1 - Typical Screen Snapshot 

The demonstrator involves three platforms: 

i. an entirely DEC Vax-based Ada system with software emulating the function of the 
real (DVT) hardware - a typical screen snapshot is shown in figure 1. 

ii. the Vax-based Ada system linked via an RS232 interface to an existing hardware rig 
supporting real DVTs, 

iii. the Ada software at ii. re-ported to run on an Intel 80286-based target. 
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A Sonar System demonstrator 

This system is based upon an existing Pascal implementation and demonstrates a typical 
naval surface ship sonar data processing and colour display function.  It presents both 
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There are two platforms (figures 2 and 3). In the first the Ada software runs in a Vax 
which is directly coupled via twin parallel interfaces to two IEE796 microprocessor 
busses, on which are situated multi-plane colour graphics display generators and 
man-machine interface (MMI) cards. All intelligence is deliberately removed from the 
IEE796 cards, and accordingly the Vax-based Ada software deals with the display and MMI 
hardware at the lowest level of bit manipulation. 

In the second platform, the majority of the demonstrator is reconfigured for a multiple 
Intel 8086 microprocessor system whilst the remaining Ada control module runs in either 
Vax or IBM PC-AT machines. 

An Engine Monitoring System demonstrator 

This demonstrator is based on an existing product [2] which performs a range of engine 
life count calculations, incident / exceedance monitoring and vibration analysis, for the 
Rolls Royce Pegasus engine. It provides a platform for investigating the use of Ada in 
high performance-critical applications; the majority of complex algorithmic calculations 
being carried out in real-time. The initial investigations involve re-implementing in 
Ada that software which is used to assess the low cycle fatigue damage on the major 
components of the engine. 

There are two phases to the work. The first involves an examination of the existing 
design and Pascal implementation, and re-implementing the system in Ada to run on a Vax. 
In the second stage the system is re-targetted to run in the real Motorola 68000-based 
hardware configuration. 

Results and Discussion 

Digital Telephone Exchange Demonstrator 

Development of this demonstrator commenced using the Telesoft Ada compiler V2.1, and 
later the Karlsruhe Ada compiler VI.1. However, the performance of these products was 
below expectation and a change was made to the newly arrived DEC Ada compiler VI.0, with 
which the implementation of the first and second (Vax-based) platforms were 
satisfactorily completed. 

For the third platform, which is still under development, involving an Intel 80286 
embedded microprocessor target, it is planned to use the Verdix/VADS system (running 
under VMS) since the DEC Ada compiler does not currently support code generation for 
non-DEC microprocessor targets. This work should allow comparison between the DEC and 
Verdix products. 

The following list identifies some of the operational issues which have been raised by 
the demonstrator experience: 

i.   The security and robustness of the Ada library management facilities. 
ii.  The ease with which software developed using one compiler can be recompiled under 

another. 
iii. The robustness of the compiler, and the existence of any implementation constraints. 
iv.  The development machine resources required. 
V.   The speed of compilation, 
vi.  The extent of interference by the operating system in the execution of the Ada 

software. 

Thus, taking point v. as an example: for both the Telesoft and Karlsruhe Ada compilers, 
in the particular application used in the demonstrator exercise, the CPU time required to 
build the first demonstr-ator platform (before the system was fully coded) was in excess 
of two hours - the elapsed time being substantially longer. Considering only the MMI 
sub-system (ca. 25% of the total system), this meant that the "(re-) build and run - 
analyse and debug" development iteration could be performed on average two or at most 
three times per normal working day (depending on the extent of re-compilation required). 

When the DEC Ada compiler was used in the same application, the entire system was built 
in 16 minutes CPU time (typically two hours elapsed time) on a Vax-11/785 with 8 Mbytes 
main memory. This turn-round time compared favourably with experiences of traditional 
languages eg Coral, and led to much greater overall productivity. 

The platform 1 software comprises some 40 packages, including 34 Ada tasks, and is 
implemented in approximately 25,000 lines of code (including comments). This represents 
a substantial working example of a complex Ada system, albeit a Vax-based implementation. 

Sonar Demonstrator 

The first (Vax-based) platform was implemented using both the Karlsruhe and DEC Ada 
compilers. In transferring to the DEC Ada compiler it was noted that successful 
re-compilation and build occurred without needing any code changes at all. Despite the 
inevitable differences in run-time characteristics, this is an optimistic sign for 
portability of Ada across different projects. 
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The first platform is implemented in approximately 8,000 lines of code (including 
comments). This compares with approximately 5,500 lines of Pascal code in the original 
implementation. However, this smaller size can be attributed to the reduced number of 
facilities for error recovery and reduced program robustness, rather than to any 
verboseness of Ada (except where enforced by the strong typing features of the language). 

The speed of progression of the Sonar 'ping-front' from the bottom to the top of the 
display screen provides a simple measure of the net relative performance of the software. 
Such measurements show that, in the applications used, for single-threaded (non 
multi-tasking) versions of the platform, the DEC Ada-based system slightly outperforms 
the DEC Pascal version. An extended multi-tasking DEC Ada implementation is showing 
comparable performance to its single-threaded counter-part. 

For the second platform (multi-Intel 8086 microprocessor configuration) the SofTech ALS 
system is being used. However, to meet the operational requirements of the system, the 
target hardware is not based on standard Intel boards. Accordingly, certain non-trivial 
problems are involved: 

i.   Support for the different hardware components employed. 
ii.  The size of the run-time support (RTS) system - this currently exceeds the amount of 

the processor card on-board memory, 
iii. Alterations to the standard RTS to cater for the different configuration of the 

target hardware. 

This work is ongoing but is already highlighting a number of important issues eg the 
impact on validation. 

Engine Monitoring System (EMS) Demonstrator 

In the past for this application the Structured Analysis / Structured Design method [4,5] 
has been used. For Pascal, this has often involved considerable pre-implementation 
'engineering' of the design. However, for Ada the information hiding features 
(primarily) appear to permit a more optimal mapping with consequential improvements in 
the software structure. This area of investigation is still at an early stage, but the 
initial results look encouraging. 

Comparing functionally equivalent single threaded (non multi-tasking) Vax-based versions 
of the software implemented respectively in (DEC) Pascal and (DEC) Ada, shows a decreased 
run-time performance in the latter case, contrary to the results from the Sonar Ada 
platform. A number of implementation changes to the Ada version have been made in an 
attempt to explain this difference, but so far these have not substantially altered the 
results. 

The reduced Ada performance for this application may be due to the significantly higher 
degree of numerical processing involved, and this is being investigated. Work is 
progressing on the implementation of a driver/display unit (to display the low cycle 
fatigue results) for which no such numerical calculations are involved. This should 
provide an opportunity for further comparison. 

For the second stage of the work, it is planned to use the Verdix/VADS cross-development 
system and this should provide both size and performance data for the 68000-based target 
configuration in the near future. 

Ancillary studies 

Apart from the demonstrator projects, a number of additional studies are being carried 
out in the following key areas: 

The design of Ada-based systems: A number of methods eg Structured Analysis / 
Structured Design [4,5], Mascot [1], the Structured Systems Analysis and Design Method 
(LSDM/SSADM) [6], and object-oriented approaches [7,8] are being reviewed. 

In the design and implementation of the MMI sub-system for the Digital Telephone Exchange 
Demonstrator,  using  a  Mascot-like  approach,  it  was  found  that  for  example: 

i. Significant effort was needed to design and efficiently package the data types and 
objects (Mascot provides insufficient support). 

ii. Packaging structures were initially adopted which were subsequently found to be non- 
optimal. Thus, while undesirable sharing of data objects was avoided, the first 
implementation required excessive sharing of data type definitions. 

iii. Although the strong typing of Ada generally led to a much more straight-forward 
mapping between the design and code, this was at the expense of some awkwardness in 
the processing of the data. 

iv. Using 'with' alone, rather than 'with' and 'use', for referencing other packages was 
found to be much clearer and less error-prone (for this large scale development). 
This contrasts with the (implied) recommendations of most Ada textbooks whose 
examples are rather simple. 
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The following points were also observed: 

Mascot segregates processing units (activities) and intercommunication data areas (IDAs), 
the access procedures for which encapsulate the more complex inter-task communication and 
synchronis-ation aspects. This is useful when the implementation teams are of mixed 
ability. In Ada, inter-task communication is an implicit part of all of the applications 
software. The full impact of this upon large systems developments has yet to be 
established. 

A direct mapping of a Mascot design to Ada usually leads to all activities being 
implemented as (active) Ada tasks. However, since Ada assumes a synchronous tasking 
model (rendezvous) the implementation of the IDAs leads to two possibilities: (1) 
treating them as decoupled (asynchronous) inter-task communication mechanisms, and hence 
coding them as (passive) Ada tasks, or (2) effecting a synchronous inter-task 
communication by means of a rendezvous. In the first (more general) case, the overall 
system performance depends even more heavily upon the efficiency of Ada tasking. 

It is important in defining the application boundary for an Ada task, to bear in mind 
that it is not possible to alter the priority of an Ada task dynamically (at run-time). 
Thus, care has to be taken not to group functionally related processing activities within 
a single task if the functions are inherently not of equivalent priority. 

The MMI sub-system has now been re-designed and re-implemented based upon the findings of 
the review into this and other methods. This serves as a model example from which a 
reasonably optimal design and implement-ation code of practice is being derived for 
future applications. 

Program testing: Most Ada compiler vendors are supplying symbolic debuggers for use 
within the program debugging stage of software development. However, most 
Defence-related projects involve a high degree of stringent testing (verification and 
validation against the requirements and design) and this aspect appears to be receiving 
scant commercial attention. 

Accordingly, the suitability of using commercial symbolic debug facilities as the basis 
of a more sophisticated test harness is being investigated. To-date a prototype test 
tool has been produced which involves lexical analysis of the software under test and the 
automated production of command files to drive the DEC symbolic debugger. Further work 
is being carried out to investigate the representation of the complex real-time behaviour 
of Ada systems by advanced graphical means. 

During this work numerous instances have been encountered of having to gather data about 
the software under test which must clearly have already been obtained during the course 
of Ada compilation. However, this information is not made externally visible by the 
compiler. It is felt that there is immense scope for Ada compiler suppliers to 
collaborate with industry to help overcome this sort of problem. 

Configuration Management: Because of the inherent complexity of most Defence- 
related programmes, and the fact that they require multiple development teams, strong 
emphasis is placed on the need for efficient tool-based configuration management methods 
to support Ada projects. Of particular interest is support for software re-use across 
projects and in devising suitable schemes for linking existing or future configuration 
management databases to Ada system build facilities. 

Current investigations are looking at the use of the DEC, SofTech and Verdix products for 
this purpose.  The results are expected to form the basis of a future paper. 

Run-time support: The provision of efficient run time support for embedded 
microprocessor-based Ada systems is crucial to the use of Ada for such applications. 
To-date studies in this area have been frustrated by the frequent lack of detailed data 
from the compiler vendors about the characteristics of the run-time support systems to be 
supplied. Again, this is a problem area which could benefit from further collaboration 
between the Compiler suppliers and Industry.  Some of the issues of importance are: 

i.   the functionality, size and performance of the RTS, and the 'hooks' provided for use 
by applications software, 

ii.  the advantages and disadvantages  (eg for portability) of using proprietary RTS 
systems eg Intel's iRMX, and the Hunter & Ready VRTX system, as well as Ada specific 
products, 

iii. the interaction between the underlying Ada compiler technology and the RTS system in 
the context of the often non-standard hardware configurations used in embedded 
microprocessor applications. 

At the present time software that can be used to 'bench-mark' the commercially supplied 
run-time support systems is being developed. 
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Conclusions 

The research programme being carried out by the Plessey Company represents a major 
initiative to examine the key issues associated with the transition to Ada. In common 
with views expressed elsewhere [9], Ada is regarded as much more than another programming 
language and is expected to provide a new and real opportunity to catalyse substantial 
improvements in industry's software engineering capability. In particular, by allowing 
the unification of working practices, Ada is expected to increase the opportunities for 
much greater levels of software portability and re-use, software reliability, and overall 
productivity. 

Industry is keen to take advantage of these benefits but clearly any significant advance 
reguires the availability of (cross-) compilers and support tools appropriate to the 
systems to be produced. Such compilers need to be not only technically compliant with 
the Ada Language Reference Manual but also of high performance and operationally 
eff icient. 

This is still an area of concern and despite the (increasing) number of validated Ada 
compilers available it is thought that there is much to be done before Ada can really be 
put to effective use for embedded microprocessor applicat-ions for which Ada has most to 
offer. 

However, for the complex and real-time applications described here, the experience gained 
to-date gives cause for optimism. Thus, in the development of the Vax-based platforms 
the DEC Ada compiler appeared to be well engineered and operationally efficient. In 
these particular circumstances it resulted in comparable run-time performance in at least 
one application to Pascal, and although it currently involves increased code sizes when 
the run-time allocation of storage is taken into account, it is thought likely that this 
situation will improve in future products. 

At the same time, the fact that the research programme has slipped in time-scales due to 
the non-availability of high performance cross-compilers and tools to support 
representative embedded micro-processor configurations is a cause of concern. Such 
delays could frustrate industry in bidding for and implementing these types of 
application. A further concern is that there often seems to be insufficient 
documentation concerning the detailed compiler characteristics eg resource reguirements, 
availability of intermediate compiler outputs, run-time support features etc. This is an 
area which is just beginning to receive greater attention in the Ada community and needs 
to be encouraged. 

As a general conclusion, it is felt that to-date there has been considerable emphasis 
(perhaps not surprisingly) on producing validated Ada compilers, but much less on 
providing genuine support for real Ada developments (whether this be appropriate 
compilers, support tools or in devising effective working methods for use with Ada). 
Clearly, if Ada is to be put into real service and provide the benefits that industry is 
expecting this balance has to be redressed at the earliest opportunity. 
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ADA® IN USE; A DIGITAL FLIGHT CONTROL SYSTEM 

T. F. VJestermeier and H. E. Hansen 
McDonnell Aircraft Company 
McDonnell Douglas Corporation 

P.O. Box 516 
St. Louis, MO  63166 

SUMMARY 

A microprocessor-based, parallel-processing flight control system has been built 
around the F-15 Eagle Dual Control Augmentation System and has been successfully flight 
tested. The microprocessors are programmed using Ada, the Department of Defense (DoD) 
standard high order language. It is widely agreed that Ada has the potential for 
reducing software life cycle costs through increased programmer productivity. To use Ada 
and realize the productivity gains, however, the compiler must be reasonably efficient. 
The use of Ada is discussed, therefore, from these two interrelated standpoints: 
software productivity and compiler efficiency. The productivity gains and the level of 
efficiency actually achieved are highlighted. 

INTRODUCTION 

The first flight of the U.S. Air Force/McDonnell Douglas F-15 with an Ada-programmed 
flight control system occurred at Edwards Air Force Base, California, on September 18, 
1984. The F-15 thus became the first aircraft to fly with a mission-critical system 
programmed in the Ada computer language. 

The compiler and supporting equipment used in the flight were supplied by Zilog, 
Inc. The compiler was designed and built by Irvine Compiler Corporation. At the time of 
this writing certification of the Ada compiler is in process and validation is expected 
to be completed in 1986. The operational flight software was developed by McDonnell 
Aircraft, and is used in the flight control system's four Zilog Z8002 microprocessors. 
The hardware used in the system was developed by the Astronics Division of Lear-Siegler, 
Inc. The same system, programmed in the Pascal computer language, flew for the first 
time in May 1983. 

Recognizing that a number of technological advancements were occurring which could 
importantly affect the direction of digital flight control system design in the near 
future, the McDonnell Aircraft Conpany initiated an Independent Research and Development 
(IRAD) program in the summer of 1981 designed to assess advancements in the following 
technology areas: microprocessors, higher order languages (HOL's), floating point 
arithmetic, and parallel processing. 

It has long been recognized that HOL's have the potential for reducing software life 
cycle costs, and current language standardization thrusts within the DoD are in pursuit 
of that goal. On the other hand, the inefficiency of compilers has often meant that 
HOL's were not feasible or cost effective for embedded software applications. Because of 
recent developments, including higher quality compilers, cheaper memory, higher speed 
processors, and computer architectures which better support HOL's, a reassessment of the 
use of HOL's was undertaken as an important part of the IRAD activity. 

In conducting this reassessment, the requirement to use Ada in future defense 
systems was kept strongly in mind. The DoD has mandated the use of Ada in all 
mission-critical defense systems that enter advanced development status after January 1, 
1984 or that enter full-scale engineering development status after July 1, 1984. 

At the time of initiation of the IRAD, suitable Ada compilers were not available. 
Consequently it was decided to begin the HOL assessment with Pascal since, from a user's 
standpoint, Pascal has many of the features of Ada. The particular Pascal compiler used 
was a 7-pass, optimizing, microconcurrent version, built by Enertec, Inc., Lansdale, PA. 
An Operational Flight Program (OFP) (including the executive, control laws, and 
built-in-test) was written in Pascal and flown on the F-15 Eagle. 

In late 1983 an Ada compiler was procured from Irvine Compiler Corporation, Irvine, 
California. Compiler efficiency was made the first priority. Whatever the virtues of a 
high-order language, the use of a HOL (including Ada) becomes impractical in many 
real-time embedded applications if the compiler is inefficient, i.e., if the object code 
produced by the compiler occupies too much memory or requires too much computation time. 
In particular, a digital flight control system in many ways supplies the most severe test 
to the use of Ada in real-time applications. 

A complete OFP, including an executive, control laws, and a built-in-test function 
was written in Ada. The object code was first tested at the module level. The software 
was then integrated with the hardware and the combination subjected to a series of tests 
befitting a flight-critical system, including a closed-loop, man-in-the-loop simulation. 
The system was then ground tested on the airplane prior to flight testing. 

®Ada is a Registered Trademark of the U.S. Government (Ada Joint Program Office). 

Note:  "The material herein was originally presented at the AIAA Guidance, Navigation and 
Control Conference, August 1985.  Copyright AIAA.  Reprinted with permission". 
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The purpose of the present paper is to report our findings as to the use of Ada in a 
Digital Flight Control System (DFCS). The specific hardware configuration that served as 
the supporting system for Ada is described first. The configuration is shown to be a 
microprocessor based, parallel processing system that facilitates an efficient software 
structure. The bulk of the paper then concentrates on the evaluation of Ada from two 
interrelated standpoints: software productivity and Ada efficiency. The productivity 
gains and the level of efficiency actually achieved are highlighted. 

Because of the stringent hardware size and computation time requirements inherent in 
DFCS's, these systems in many ways supply the litmus test to the use of Ada in other 
embedded real-time applications. 

Implementation of Ada in the flight control system is the first step towards an 
Ada-based integrated control system that will include elements of fire control, aided 
navigation, propulsion and trajectory control. 

SYSTEM DESCRIPTION 

Hardware Configuration - The particular hardware configuration that served as the 
supporting system for technology evaluation is built around the present F-15 Eagle dual 
Command Augmentation System (CAS). This was done for two reasons: the electronic 
portion of the CAS could be modified at minimum cost/time to provide all of the required 
research and development digital features; and, the system could be flight tested with 
minimum aircraft modification. 

The present production F-15 control system is shown in Figure 1. The CAS computers 
have been modified as depicted in Figure 2. The existing dual analog computers in each 
computer LRU were replaced with two digital processors (Z8002 microprocessors) 
(Reference (1)) and associated memory and converters. The modifications were carried out 
by the Astronics Division of Lear Siegler Corporation, Santa Monica, and are described in 
detail in Reference (2). 
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Figure 2. F-15 Flight Control Coinputer Modifications 

The resulting system is a parallel processing system with the Operational Flight 
Program (OFP) partitioned by control axes^. Two processors operate on the pitch axis 
software and two operate concurrently on the roll/yaw software. The two pitch processors 
are frame synchronized, as are the roll/yaw processors. The two pitch processors, 
however, are unsynchronized with respect to the roll/yaw processors. The dual processors 
in the pitch and roll/yaw axes are consistent with the dual (fail-safe) nature of the 
F-15 production CAS. 

Reference (3) shows that the increased computation power afforded by parallel 
processors (vis-a-vis a uniprocessor) can be used to advantage in a number of ways. The 
increased computation power afforded by the present parallel system has been exploited to 
support an HOL and to simplify the software structure. For example, all control laws are 
processed at a single iteration rate, thereby avoiding a multiple rate structure. 

Operational Flight Program - The OFP includes an executive, control laws, and a 
built-in-test (BIT) function all programmed in Ada. The control laws used in this Ada 
version of the OFP are designed to emulate the analog control laws, and therefore the 
flying qualities of the production F-15. The built-in-test function includes a pre- 
flight and a maintenance BIT, as described in detail in Reference (4). 

The computational events in a 12.5 ms frame are depicted in Figure 3. All parts of 
the control laws are coraputed at 80 Hz. 

Memory sizes and computation times for the Ada version of the OFP are given in 
Figure 4. (The maintenance portion of BIT is not included in this figure). Obviously, a 
large amount of spare memory is available for future growth. The computation time 
requires a 38% and 59% duty cycle in the pitch and roll/yaw computers. Thus, adequate 
spare computation time is also available for future growth. The 622 word kernel referred 
to in Note 4 is primarily the floating point algorithm written in assembly language. 

FLIGHT TEST RESULTS 

The DFCS programmed with the Ada OFP of Figure 4 was flight tested at Edwards AFB 
during 1984. As shown in Figure 5, nine dedicated DFCS/ Ada test fights were flown in 
two phases. The DFCS/Ada configuration was flown on nine other missions whose purpose 
was other than the specific evaluation of DFCS/Ada. 
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The first test phase included four DFCS/Ada flights. The maneuvers included middle 
of the envelope handling quality checks up to 1.2 Mach, large amplitude maneuvering, 
tracking and formation flight. In all cases the test pilots commented that the aircraft 
flew the same as any other F-15 with an analog flight control system. 

Following the initial four DFCS/Ada flights it was decided to fly some additional 
flights in order to expand the flight envelope. The second phase of DFCS/Ada testing 
consisted of five flights. 

Two flights (668-7 and 671-8) were flown in order to investigate the high angle-of- 
attack handling qualities of the system with a clean aircraft configuration and a con- 
figuration with a centerline tank and two inboard pylons. The pilots indicated that they 
could not tell the difference between an aircraft equipped with an analog or digital CAS. 

The final test flight (672-9) in this series of DFCS/Ada test flights expanded the 
DFCS flight envelope to the high supersonic speeds. Five speed runs along with three air 
refuelings were performed on this flight. The DFCS equipped aircraft was flown to 
calibrated airspeeds up to 720 knots, Mach numbers up to 2.0 and at altitudes exceeding 
45,000 feet. At all test points there were no anomalies noted in the data and pilot 
comments indicated that the aircraft response was the same as a standard F-15 with an 
analog CAS. 

All the test points flown in these last four instrumented flights are plotted on a 
standard F-15 level flight envelope in Figure 6. At all test points the AFFTC test 
pilots noted that the DFCS aircraft responses were the same as a standard F-15. These 
excellent results indicate that the DFCS programmed in Ada can be utilized throughout the 
F-15 flight envelope. 
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Figure 3. Events in 80 Hz Computation Frame 

OFP Element 
Size 

(16 Bit Words) 

Spare 21,935 

Time 
(ms) 

Pitch CAS Control Laws 1,343 2.81 

Executive 2,026 2.00 
Pitch 
Computers 
(Each) 

Built-in-Test (Preflight) 934 N/A 

Total 4,925('') 4.81 

Available 27,648<2) 12.50(3) 

Spare 22,723 7.69 

Roll CAS Control Laws 775 1.72 

Yaw CAS Control Laws 867 2.66 

Roll/Yaw 
Computers 

Executive 

Built-in-Test (Preflight) 

2,454 

995 

3.02 

N/A 

(Each) Total 5,713<'') 7.40 

Available 27,648(2> 12.5013) 

5.10 

(1) OFP version Ada; uses MCAIR floating poinl algorithm 
(2) 27K flight memory card: 24K PROM; 2K scratcti pad; IK NVR 
(3) 80 Hz computation frame 
(4) Includes 622 word kernel 

QP43-1043-4-R 

Figure 4.   DFCS OFP^^) Memory Size and Computation Time 

Date Ftlglit Numbn inight TIma Pilot Purpose 

9/17/84 622-1 1.2 Lt Col Saxon Middle of Envelope to Low Supersonic Testing 

9/18/84 623-2 1.1 Fit LI Sears Middle of Envelope to Low Supersonic Testing 

9/19/84 624-3 1.0 Fit LI Sears Trac)<lng and Formation 

9/19/84 625-4 0-7 Lt Col Saxon Large Amplitude Maneuvering 

11/19/84 659 1,6 Maj Slrittmatler Non-Test Flight 

11/20/84 660 1,7 Maj Ferraloll Non-Test Flight 

12/3/84 661 0,4 r^ai Strittmatter Non-Test Flight 

12/4/84 662 2,6 Ma| Slrittmatler Non-Test Flight 

12/4/84 663 0,4 Mai Strittmatter Non-Test Flight 

12/4/84 664-5 1,2 Mai Ferraloll Middle ol Envelope to Low Supersonic Testing 

12/5/84 665-6 1,5 Fit Lt Sears Tracldng and Formation 

12/5/84 666 0,4 Maj Strittmatter Non-Test Flight 

12/6/84 667 0-4 Maj Strittmatter Non-Test Flight 

12/12/84 668-7 1.4 Fit LI Sears High Angle-of-Attack 

12/12/84 669 1,6 Maj Prill Non-Test Flight 

12/17/84 670 1,1 Fit Lt Sears Non-Test Flight 

12/17/84 671-8 1,8 Maj Strittmatter High Angle-of-Attack 

12/20/84 672-9 1,5 Fit LI Sears Supersonic 

18 Flights 21,6 lir 5 Pilots 

80 

60 

Altitude 

1,000 ft 
40 

20 
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Figure 5. Summary of DFCS/Ada Fliglit Testing 
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Figure 6.  DFCS/Ada Fiiglit Test Condition 
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SOFTWARE PRODUCTIVITY 

An increase in software productivity and a corresponding decrease in the cost of 
developing software is, of course, the raison d'etre for the use of Ada. Studies made 
for the DoD predict that Ada will result in substantial cost savings DoD-wide. 

A^ number of analyses have been made of the impact of HOL'S on software productivity 
and life-cycle costs. Software productivity analyses necessarily involve assumptions 
which are often highly judgemental, and sweeping generalizations about software 
life-cycle costs are rightly viewed with skepticism. 

VJith these caveats in mind, we present in Figure 7 our experience of the impact of 
Ada on programmer productivity. The DFCS program is admittedly not a large experience 
base and certainly no claim is made that these results are universally true. The figure 
says that a software program written in floating point assembly language or Pascal will 
require only about 40% and 20% of the effort required to produce that same program in 
fixed point assembly language. Because of the similarity of Ada and Pascal from the 
user's standpoint, for a flight control application Ada productivity gains are about the 
same as Pascal. Assembly language is used as the basis of conparison since it is used in 
the vast majority of embedded applications. 

1.2 

1.0 

0.8 
Relative 

Programmer 0.61— 
Manhours 

0.4 

0.2 

0 
 Y  

Assembly Language 
Notes: 

(1} Effort applies to design, coding, and testing of control laws 
(2) Pervasive use of Ada; estimate 

Fixed 
Pointd) 

Floating 
Point'i' 

- Pascaldl     Ada<" 

. Adai!l. 

GP43.1043«fl 

Figure 7. Impact of HOL and Floating Point on 
Programmer Productivity 

For DFCS applications, the two features of Ada that strongly impact productivity are 
high level constructs and floating point. As illustrated in Figure 8, they eliminate the 
labor associated with fixed point arithmetic and simplify and reduce the source 
statements required to program a system, thereby reducing programming errors and 
simplifying program documentation. In (a), a structural filter is shown in its original 
s-plane form; (b) shows the difference equation representation that is solved in the 
digital computer; (c) shows the single Ada program statement required to solve this 
equation; (d) shows the number of assembly language statements required. Note that the 
assembly language employs floating point add/subtract (FADD/FSUB) and floating point 
multiply (FMUL) instructions. If fixed point arithmetic had been used, the number of 
statements required would have been still greater. 

The Ada language is designed to promote the goals of software portability and 
reuseability. When these goals are pervasively realized, it is estimated by a number of 
notable software engineers that Ada may achieve productivity gains of 10:1 vis-a-vis 
assembly language. Currently, however, a major impediment to the realization of these 
goals is the lack of a large number of high quality compilers and associated target 
computers. ^ 

The Phases of Software Development - It is widely agreed that the total of software 
development consists of four activity phases: design, coding, testing and maintenance. 
Ada obviously has a large impact on coding productivity as illustrated in Figure 8. Less 
obvious IS the influence on software design, testing and maintenance. The impact on 
software productivity must therefore be assessed for each of the four phases of software 
development. The assessment must also take into account the four functional divisions of 
the total flight control OFP: the control laws, the executive, the redundancy management 
function, and the built-m-test (BIT) function. 
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Original S-Plane Representation 
of Structural Filter 

0.48073^ + 83.5533S + 3894 

S^+125S + 3894 

Assembly Language Statements* 

STFL = [0.56603 • PRESTRU] - [0.33991 • PREM1STRUJ + 
[0.089533 • PREM2STRU1 +[0.87711 • STFLM1]- 

[0.19182 ■ STFLM2) 

% RR8 Contains PRESTRU 
% 0.56503 • PRESTRU 
% Store Result for Later Use 

% 0.33991 • PREM1STRU 
% Prepare for Subtraction 

Difference Equation Representation 

STFL = 0.56503 • PRESTRU 

-0.33991 • PREM1STRU 

+ 0.089533 • PREI^2STRU 
+ 0.87711 • STFM1 -0.19182 • STFLM2 

^ 

or 

Ada Statement 

STFL: = 0.56503 • PRESTRU 

-0.33991 • PREI^ISTRU 

+ 0.089633 • PREM2STRU 

+ 0.877116 • STF1M1 -0.19182 • STFl'M2; 

LDL RR10,PCAS24; 
CALL FMUL; 
LDL RR6, RR8; 
LDL RR8, PREM1STRU 
LDL RR10, PCAS25; 
CALL FMUI; 
LDL RR10,RR8; 
LDL RR8,RR6; 
CALL FSUB, 
LDL RR6,RR8; 
LDL RR8,PREM2STRU; 
LDL RR10,PCAS26; 
CALL FMUL; 
LDL RR10,RR6, 
CALL FADD 
LDL RR6,RR8; 
LDL RR8,STFLI^1; 
LDL RR10,PCAS27; 
CALL FI^UI; 
LDL RR10,RR6; 
CALL FADD; 
LDL RR6,RR8 
LDL RR8,STFLM2; 
LDL RR10,PCAS28; 
CALL FMUI; 
LDL RRIO.RRB; 
LDL RR8,RR6; 
CALL FSUB; 
LDL STFI.RRB; 

% RR6-[0.33991 • PREM1STRU] 
% Store Result for Later Use 

% 0.089533 • PREM2STRU 

% RRt + [0.089533 • PREM2STRU1 
% Store Resuit for Later Use 

% 0.87711 • STFLM1 

% RR6 +[0.87711 • STFLM1I 
% Store Result for Later Use 

% 0.19182 ■ STFLM2 
% Prepare for Subtraction 

% RR6-[0.19182 • STFLM21 

Based on floating point algorithm 
"Twice as long if fixed point Gp43.0013.25 

Figure 8.  Ease of Programming; Ada vs Assembly 
Steps in Digital IVIechanization of Structural Filter (STFL) 

A qualitative assessment is made in Figure 9 of the impact of Ada on each of the 
functional divisions in each of the development phases. The percentages shown for each 
of the functions are typical amounts, by word count, of the total OFP; thus, the control 
laws are typically 20% of the total OFP size. The percentages shown for the development 
phases are estimates of the amount of the total software development activity. Note that 
the maintenance phase is less of a percentage of the total job than it might be for many 
types of embedded software applications. This is so since the DFCS maintenance phase is 
considered to begin with delivery of the first production aircraft. Barring major 
structural, equipment, or aerodynamic changes to the aircraft, changes to flight control 
software should be minor for production aircraft. Nevertheless, when these changes are 
required, they are much easier to make with Ada. 

Software Development Phases 

OFP 
Functional 
Divisions 

Design 
(25%) 

Coding 
(20%) 

Test(i) 
(45%) 

Maintenance'^) 
(10%) 

Control Laws                        (20%) 

Executive                               (15%) 
Redundancy Management    (20%) 

Built-in Test                           (45%) 

Some 

Nil 

Nil 

Nil 

Large 

Large 

Large 

Large 

Large 

Some 

Some 

Some 

Some 

Nil 

Nil 

Some 

Notes: 
{1) Ttie test ptiase includes development flight testing 
(2) The maintenance phase begins with the delivery of production aircraft 

Figure 9. A Qualitative Assessment of tfie Impact of Ada 
on Software Productivity 

Ada and floating point also have some inpact on software design, testing and 
maintenance, although the impact is less direct. The language used has negligible 
influence on the design of executive, redundancy management, and BIT software. 
Synthesizing the control laws from aerodynamic data is totally independent of language 
considerations; however, rendering the usual s-plane representation of the control laws 
into a digital format is made easier with Ada and floating point. 

Some aspects of testing and maintenance are made easier through the use of Ada and 
floating point. During testing of the control laws, for example, finding and eliminating 
overflows occasioned by the use of fixed point can be very time consuming. Modifications 
to the software are much easier to make with Ada and floating point since only the 
affected area of the program need be changed, whereas with assembly language and fixed 
point, substantially more of the program may have to be rescaled and reprogrammed. 
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Concern is often expressed that testing, especially at the systems level, is more 
difficult if Ada is used; an error found during hardware-software integration, for 
instance, may be harder to locate and correct in the object code. This problem can be 
circumvented by having the compiler generate an assembly-language listing that includes 
comments that link the assembly-language object statements to the Ada source statements, 
as m Figure 8(d). Such listings are necessary in any case if patches to the program are 
to be made. In the DFCS project, no testing difficulties were encountered because of Ada. 

Self Documentation - If properly generated, an Ada PDL Specification contains the 
information and has the clarity of a flow chart. The compiler generates the listing and 
programmer labor is not required. In addition, the source code by its very nature always 
reflects the underlying machine instructions. The source statements in the listing, 
moreover, are readily traceable back to the original software design document. 

Transportability - An OFF written in assembly language must be checked out on the 
actual target processor, an emulator of the exact processor, or a software simulator of 
that processor. In all cases, the source program cannot be tested until one or more of 
the above are procured and this may cause a delay in software development. With Ada the 
problem can be circumvented. If a compiler is available for any target machine, 
simulator, or emulator, the source program can be tested using one of these devices. In 
so doing, a high confidence exists that the source program is correct well before the 
target machine becomes available. 

Floating Point Arithmetic - Floating point arithmetic is supported by most HOL's, 
including the Ada language. In addition, floating point offers a number of advantages 
vis-a-vis fixed point, even when used with assembly language: the range of numbers that 
can be handled is extended; inherent safety features are provided; and software produc- 
tivity is increased. 

The use of floating point arithmetic extends the range of the variables used in DFCS 
software with some important consequences: as examples, the granularity of a variable is 
decreased, and the significant figures in a variable are more easily preserved. 

The use of floating point algorithms also provides inherent safety features, 
particularly the handling of overflows. Overflows, for example, are prevented from 
occurring in the tody of the program. 

Perhaps the biggest advantage of floating point, however, is increased programmer 
productivity. With floating point, scaling is automatic, and the programmer is relieved 
of all tedious and time consuming scaling considerations. This is in keeping with the 
philosophy of having the computer handle all the tasks of which it is capable, allowing 
the engineer more time for productive tasks. 

It is a common perception that fixed point arithmetic is always faster than floating 
point. This IS not necessarily true. In fact, although floating-point addition and 
subtraction may take longer than fixed-point, floating-point multiplication and division 
may be as fast or faster than fixed-point. In addition, fixed-point programs often 
employ time-consuming double precision arithmetic to minimize round-off and truncation 
errors. This is not to suggest, of course, that the speed of the floating point algorithm 
used IS unimportant. 

It was always the intent on the DFCS program to eventually implement floating point 
in hardware; however, at the time of initiation of the program, suitable hardware was not 
available.  In the interim, various software floating point algorithms have been used. 

The first floating point algorithm to be used employed the IEEE format and a 24-bit 
mantissa.   It  was  subsequently  modified  to  use  a  16-bit  mantissa.   This modified 
algorithm^ achieved faster speeds with little degradation in accuracy and for a time was 
the baseline implementation. 

Recognizing that the speed of a floating point algorithm could be improved by 
tailoring the format to the computer architecture, Harold Hansen, one of the authors of 
this paper, developed a floating point algorithm which dramatically reduces computation 
time from that achieved with the 16-bit algorithm, and which even approaches the 
performance expected from a fast co-processor (see References 5 and 6). The 
mechanization has been used in the Ada, Pascal, and assembly language versions of the OFP 
with very favorable results. 

The Ada language supports the use of fixed point arithmetic; however, the authors 
believe that the use of fixed point, except in isolated instances, represents a major 
step backwards. Therefore, the potential user of Ada should give serious consideration 
to how floating point is to be mechanized. 
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COMPILER EFFICIENCY 

Efficiency Goals - The main disadvantage of HOL's compared to assembly language is 
an expansion of program size and execution time. The magnitude of expansion for a given 
HOL varies widely, depending on the application, the compiler, and the target computer. 
In DECS applications, program size directly affects recurring costs. At some point, the 
additional cost of memory needed to accommodate a HOL for some number of aircraft can 
offset the software development cost savings afforded by a HOL. If DECS performance is 
not to be compromised, the expansion of execution time must be held to a tolerable level. 
Memory and time expansion goals were therefore established, below which HOL code would be 
cost and performance competitive with assembly language code, to wit: 

GOALS: 

— Time Expansion    <  20% 
-- Memory Expansion  < 50% 

The goals are about what we think the efficiency of a compiler should be in order to 
produce object code that is competitive with assembly-language code on a production DFCS. 
The rationale used to establish these goals follows. 

In DFCS applications, confutation time is of the essence. For reasons of minimizing 
the deleterious effects of aliasing and transport lags, DFCS computers must operate at 
fairly high computation (iteration) rates (80 iterations per second are common). All 
foreground portions (control laws, executive, and redundancy management) of the OFP must 
be completed within the confutation frame. 

It is, of course,  difficult to generalize about how much time expansion can be 
tolerated.   In the present DFCS,  an expansion in time in excess of 50% could be 
tolerated.  On the other hand, systems that just satisfy MIL-F-9490D would run out of 
time if the expansion were in excess of 25%.  For the purpose of the present study, an 
expansion goal of less than 20% (expansion factor  1.2) was established. 

As stated earlier, the most direct and measurable effect of the expansion in program 
size is the increased recurring cost of memory. When contemplating the use of a HOL, the 
trade-off between reduced software development costs and increased recurring costs must 
be made, and the point determined at which a HOL becomes cost-effective. This point 
will, of course, differ for every system application. 

The factors involved are illustrated with Figure 10. The important assumptions 
involved are shown on the figure. For sinplicity, the graph is made linear, thereby 
neglecting the fact that at an expansion factor of 2.0, say, a whole new PROM board might 
be required per computer; whereas at lower expansion factors, 1.1 say, only additional 
memory chips may be required to be added to an existing board. In this illustration, if, 
for example, the expansion factor is 2.0 (100%) the recurring cost of additional memory 
is $2.4 MIL for a quad system. It is doubtful if the use of a HOL would reduce the 
development cost of an OFP of this size so as to offset the increased memory costs. On 
the other hand, with an expansion factor of 1.5 or less, the HOL might pay for itself. 
Based on this type of analysis, a memory expansion goal of less than 50% was established. 

2.5 

Assumptions: 
• Basic Assembly Language 

OFP Size = 20Kx 16 Words 
• Production Run of 

500 Airplanes 
• Memory Cost = 0.375° per Bit 

(Mil Spec PROM) 

Increased 
Recurring 1.5 
Cost of 
Memory 

Millions 
of        1.0 

Dollars 

1.2 1.4 1.6 1.8 

Memory Expansion Factor 

Figure 10. The Impact of HOL Inefficiency on the increased 
Recurring Cost of Memory 
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Efficiency Achieved - The computation time and memory expansion numbers for the Ada 
OFP that was flown (Figure 4) are 1.1 and 1.63 as shown in Figure 11. The time expansion 
is seen to be below the goal. The memory expansion is currently above the goal. In the 
expansions, the assembly language program used for comparison employs floating point. 

HOL Expansions Compared to Floating Point Assembly Language 

Pascal Ada 

Goal February     May     October        August 
1983        1983        1983 1984 

Memory Expansion      <1.5        1.77        1.35        1.30       1.63(1.36)* 

Time Expansion <1.2        1.28        1.16        1.10       1.10 

'Compared to fixed point assembly language 

Figure 11.  Compiler Efficiency 

Gp43.1043.5-R 

Achieving a high level of Ada efficiency will be an ongoing activity as it was with 
Pascal, with similar results expected. Figure 11 illustrates how Pascal expansions 
decreased over time as the compiler was modified for improved efficiency. As shown, by 
Oct 83 the memory and time expansions had been reduced to 1.30 and 1.10, well below the 
established goals.  Ada time expansion is already below the goal. 

SUMMARY AND CONCLUSIONS 

An operational flight program has been developed in Ada and flown on an F-15 Eagle 
m evidence of the fact that Ada is feasible in DFCS applications and therefore in other 
avionic systems as well.  In so doing, the increased software productivity resulting from 
the use of Ada has been demonstrated. 

In general, DFCS applications impose stringent requirements on compiler efficiency. 
If memory expansion is too large, the increased recurring cost of system hardware will 
offset the productivity gains; if computation time expansion is too large, the 
performance of the system will suffer. In the present instance, exemplary memory and 
computation time expansion levels have been achieved with an efficient Ada compiler. 

The authors are of the opinion that the use of Ada holds great promise in avionics 
systems. At the same time, they realize that Ada is not a panacea. If a computation 
task cannot be accomplished in assembly language, neither can it be accomplished in Ada 
If the compiler is inefficient, or if the target conputer speed is inadequate, then the 
benefits of Ada may be elusive. But under the right combination of computer speed 
efficient software structure, and compiler efficiency, as in the present F-15 DFCS the 
benefits of Ada are substantial and can be realized. 
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UTTL: Reference manual for the Ada programming 
language  CORP: Honeywell Systems and Research 
Center, Minneapolis, Minn.;  Alsys, Saint Cloud 
(France). 

ABS:  Ada is a programming language designed in accordance 
with requirements defined by the United States 
Department of Defense: the so-called Steelman 
requirements. Overall, these requirements call for a 
language with considerable expressive power covering £ 
wide application domain. As a result, the language 
Includes facilities offered by classical languages 
such as Pascal as well as facilities often found only 
in specialized languages. Thus the language is a 
modern algorithmic language with the usual control 
structures, and with the ability to define types and 
subprograms. It also serves the need for modularity, 
whereby data, types, and subprograms can be packaged. 
It treats modularity in the physical sense as well, 
with a facility to support separate compilation. In 
addition to these aspects, the language covers 
real-time programming, with facilities to model 
parallel tasks and to handle exceptions. It also 
covers systems programming; this requires precise 
control over the representation of data and access to 
system-dependent properties. Finally, both 
application-1evel and machine-1evel input-output are 
def ined. 
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UTTL: Introduction to Ada, a higher order language. 
L103 teacher's guide   CORP: Softech, Inc., Waltham, 
Mass. 
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courses in the Ada programming language. 
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UTTL: Ada compiler validation summary report:  ROLM 
Ada compiler, version 4.52 V-003   CORP: Softech, 
Inc.. Waltham, Mass. 
The ROLM Ada compiler, version 4.52, was tested in 
June 1983 with version 1.1 (March 4, 1983) of the ACVC 
validation tests. Version 1.1 of the test suite 
contained 1,595 tests, of which 1,292 were applicable 
to this compiler. Of the applicable tests, 56 were 
withdrawn due to errors in the tests. All of the 
remaining 1,235 applicable correct tests were passed. 
AD-A136760   83/06/03   84N20202 

UTTL: Ada (registered trademark) technical overview. 
L102 teacher's guide   CORP: Softech, Inc., Waltham, 
Mass. 

ABS:  An introduction to the Ada computer programming 
language is given. A summary of Ada program features 
is provided. The Ada and FORTRAN languages were 
compared. 
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Western digital 
CORP: Softech, 

UTTL: Ada compiler validation report: 
STC-Ada compiler, version C1.0M V-004 
Inc., Waltham, Mass. 

ABS:  This report describes the results of the validation 
effort for the following Ada translator: Host Machine: 
Western Digital WD1600 Series MicroEngine; Operating 
System: STC Ada Operating System 2.9; Host Disk 
System: 10 megabyte Winchester; Target Machine: 
Western Digital WD1600 Series MicroEngine; Operating 
System: STC Ada Operating System 2.9; Language 
Version: ANSI/MIL-STD-1815A Ada; Translator Name: 
STC-Ada; Translator Version: C1.0m; and Validator 
Version: 1.1 (March 4, 1983). Testing of this 
translator was conducted by SofTech, Inc. The purpose 
of this report is to document the results of the 
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testing performed on the translator, and in 
particular, to: identify any language constructs 
supported by the translator that do not conform to the 
Ada standard; identify any unsupported language 
constructs required by the Ada standard; and describe 
implementation-dependent behavior allowed by the 
standard. 
AD-Ai36738   83/07/28   84N20200 

UTTL: Computer program 
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83/03/22   84N14774 

UTTL: Computer program development specification for 
Ada integrated environment.  Ada compiler phases 
B5-AIE (1). COMP (1)   CORP: Intermetrics, Inc., 
Cambridge, Mass. 
This document specifies the requirements for the 
performance and verification of the Ada compilers for 
the IBM (VM/370) and Perl< i n-E 1 mer (PE) 8/32 (OS/32) 
systems. Each compiler provides the user with the 
ability to translate an Ada compilation and obtain a 
program listing and linl<able machine code for the 
respective target machine; listing, optimization, and 
debugging control are selectable by the user. Because 
of the compiler structure and the similarity of the 
target machines, the two compilers are nearly 
identical. As a result, this document presents the 
design as though there were a single Ada compiler; 
where target-machine dependencies make the compilers 
different, this is pointed out in the discussion. 
AD-A134032 IR-677-2   82/11/05   84N14773 

UTTL: System specification for Ada integrated 
environment type A AIE(1)   CORP: Intermetrics, Inc., 
Cambridge, Mass. 
This specification establishes the performance, 
design, development and test requirements for the Ada 
Integrated Environment (AIE), an integrated set of 
software tools designed to support the development and 

maintenance of software written in the Ada Programming 
Language. 

RPT#: AD-A134080 IR-676-2   82/11/12   84N14769 

UTTL: ADA (trademark) training curriculum. 
Programming methodology m203 teacher's guide   CORP: 
Softech, Inc., Waltham, Mass. 
Partial Contents; Review of Software Life Cycle; 
Coding Phase; Goals; Structured Programming; Control 
Structures; Coding Style; and Ensuring Reliability. 
AD-A143581   84/07/00   84N33082 
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UTTL: Ada compiler validation summary report, Dansk 
Datamatik Center, VAX 11 compiler version 1.1   CORP: 
Softech, Inc., Fairborn, Ohio. 
The purpose of this Validation Summary Report (VSR) is 
to present the results and conclusions of performing 
standardized tests of the Dansk Datamatik Center 
Compiler. The suite of tests known as the Ada Compiler 
Validation Capability (ACVC), Version 1.4, was used. 
The ACVC suite of tests is used to validate 
conformance of the compiler to ANSI/MIL-STD-1815A 
(Ada). The purpose of the testing is to ensure that 
the compiler properly implements legal language 
constructs and that it Identify, reject from 
processing, and label illegal language constructs. The 
testing also identifies implementation-dependent 
behavior permitted by the standard. Six classes of 
tests are used. These tests are designed to perform 
checks at compile time, during execution, and at link 
time. The ACVC, Version 1.4, contains 2178 tests, of 
which 2011 were applicable to this implementation. Of 
the 2011 applicable tests, 73 were withdrawn due to 
the occurrence of errors in the tests. Results showed 
that all of the remaining 1938 valid tests were 
successfully passed by the Dansk Datamatik Center 
compiler. 
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list of tests and results is provided in this report. 
RPT#: AD-A153747   84/11/28   85N29591 

UTTL: Ada (trademark) compiler validation summary 
report.  Honeywell information systems GC0S6 Ada 
version 1.1   CORP: Federal Compiler Testing Center, 
Fal1s Church, Va. 

ABS:  The Honeywell Information Systems Compiler GC0S6 Ada 
version 1.1, for the DPS 6/95, DPS 6/75, DPS 6/45, 
microsystem 6/20 and microsystem 6/10 using GC0S6 
M0D400, was tested with version 1.4 of the ACVC 
validation tests. Version 1.4 of the test suite 
contained 2185 tests, of which 2008 were applicable to 
this implementation. Of the applicable tests, 71 were 
withdrawn due to errors in the tests. Of the remaining 
applicable correct tests 1937 passed, and no anomaly 
was discovered. 

RPT#: AD-A153746 OIT/FSTC-84/515   84/12/14   85N29590 

ABS: 

RPT#: 

ABS: 

UTTL: Ada (trademark) compiler validation summary 
report:  ALSYS ALSYCOMP-OOOI   CORP: Bureau 
d'Orientation de la Normalisation en Informatique, 
Rocguencourt (France). 
The purpose of this report is to document the results 
of the testing performed on the compiler, and in 
particular, to: identify any language constructs 
supported by the compiler that do not conform to the 
Ada standard; identify any unsupported language 
constructs required by the Ada standard; describe 
implementation-dependent behavior allowed by the 
standard. 
AD-A153750   84/12/08   85N29592 

UTTL: Ada compiler validation summary report. 
University of Kar1sruhe-GMD/German MOD Siemens - BS 
2000 version 7.30   CORP: 
Industr ieanlagen-Betriebsgesel1schaft m.b.H., 
Ottobrunn (West Germany). 
The purpose of this Validation Summary Report (VSR) is 
to present the results and conclusions of performing 
standardized tests of the GMD/German MOD Compiler. 
On-Site testing was performed 27 Sep. 1984 to 8 Oct. 
1984 at the GMD Center in B i r 1 i ngho.ven, Germany under 
the auspices of the Ada Validation Facility (AVF), 
according to the Ada Validation Office (AVO) policies 
and procedures. The GMD Compiler (Siemens 7.XXX 
Version 840404) is hosted on the Center's Siemens 
7.571 Computer operating under BS2000 7.1. The suite 
of tests known as the Ada Compiler Validation 
Capability (ACVC), Version 1.4, was used. A complete 
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UTTL: Ada compiler validation summary report: 
University of Kar1sruhe-GMD/German MOD VAX 11 
compiler, version vl.O   CORP: 
Industrieanlagen-BetriebsgeselIschaft m.b.H., 
Ottobrunn (West Germany). 
The purpose of this Validation Summary Report is to 
present the results and conclusions of performing 
standardized tests of the System/German MoD compiler. 
On-site testing was performed 28 Sep. 84 to 6 Oct. 84 
at System KG in Karlsruhe, Germany under the auspices 
of the Ada Validation Facility (AVF), according to the 
Ada Validation Office policies and procedures. The 
System compiler (VAX11 Version 1.0) is hosted on the 
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Center's VAX-11/750 computer operating under VMS 3.0. 
The suite of tests known as the Ada Compiler 
Validation Capability, Version 1.4, was used. The 
purpose of the testing is to ensure that the cotnplier 
properly implements legal language constructs and that 
is identify, reject from processing, and label illegal 
language constructs. The testing also identifies 
implementation-dependent behavior permitted by the 
standard. The AVF concluded that the results obtained 
Show accepted compliance to the February 1983 ANSI Ada 
Reference Manual. 

RPIM:    AD-A154370   84/11/12   85N30678 

UTTL: Distributed avionics processing using ADA 
AUTH: A/ADAMS, S. E.;  B/CLAUSING, B.   PAA: 

A/(Intermetrics, Inc., Cambridge, MA)   IN: NAECON 
1983; Proceedings of the National Aerospace and 
Electronics Conference, Dayton, OH, May 17-19, 1983. 
Volume 2 (A84-16526 05-01). New York, Institute of 
Electrical and Electronics Engineers, 1983, p. 
979-983. 

ABS:  Problems that arise when implementing real-time 
avionics systems are discussed, with emphasis placed 
on the issues related to the use of the Ada language 
for programming single and multiple processor systems. 
Consideration is given to systematic and random timing 
errors, scheduling by time multiplexing, task 
partitioning, and problems arising from the use of two 
new language constructs (rendezvous and exception 
propagation). It is noted that in real-time 
distributed systems, the accuracy of calculations will 
be always affected by a time skew and that avionics 
systems must be designed to tolerate this variation. 
Care must be also taken to ensure a reasonable bound 
for the inherent latency of multiprocessor 
communications.   83/00/00   84A16647 

UTTL: ADATLAS - The test language of the future 
AUTH: A/ANDERSON, R. E.;  B/MCGARVEY, R. L.;  C/ZEAFLA, L. 

A.   PAA: C/(AAI Corp., Baltimore, MD)   In: 
AUTOTESTCON '81; Proceedings of the Conference, 
Orlando, FL, October 19-21, 1981. (A83-10726 01-59) 
New York, Institute of Electrical and Electronics 
Engineers, Inc., 1981, p. 94-101. 

ABS:  ADA is the new DOD standard High Order Language 
intended for use in embedded computer systems. This 
paper proposes that it could be more cost effective to 
write unit under test (UUT) programs in ADA instead of 
ATLAS, the currently accepted standard test language. 
This could be accomplished by combining the test 
oriented features of ATLAS with the common programming 
features of ADA, specifying a standard ADA package 

that provides the test oriented functions. 
83A10741 
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UTTL: ANSI Ada and the UK M-CHAPSE 
A/BARNES, d. G. P.   CORP: Europea 
Paris (France).   In ESA Software 
N84-14729 05-61) 
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UTTL: Software engineering 
A/BATTRICK, B.;  B/ROLFE, E. J.   CORP: European Space 
Agency, Paris (France).   Proc. of ESA/ESTEC Sem., 
Noordwijk, Netherlands, 11-14 Oct. 1983 
ESA-SP-199 ISSN-0379-6566   83/08/00   84N14729 

UTTL: Ada (trademark) as a program design language: 
Have the major issues been addressed and answered? 
A/BLASEWITZ, R. M.   CORP: RCA Government Systems 
Div., Moorestown, N. J.   CSS: (Missile and Surface 
Radar.)   In Army Communications-Electronics Command 
Proc. of the 2nd Ann. Conf. on Ada (Trademark) 
Technol.  p 111-114 (SEE N84-30745 20-61) 
Department of Defense requirements to use the higher 
order language Ada will create challenges to 
developers of military software that encompass these 
major concerns: (1) developing a core of Ada software 
personnel, (2) achieving productivity and software 
gains that have been targeted as Ada life-cycle 
objectives, and (3) transitioning to a language that 
embodies a capability to express software solutions 
eloquently, clearly, reliably and efficiently. Ada is 
more than a programming language, it is the basis for 
a modern perspective of software design and 
engineering. The IEEE working group on Ada as a PDL 
has been addressing the issues involved with the use 
of Ada as a design mechanism for nearly two years. 
This working group has recently generated a draft 
guideline that addresses the key issues. The extent of 



AUTH: 

ABS: 

Industry's involvement with Ada PDLs and the status 
and final form of the IEEE product will substantially 
impact both the acceptance of the Ada language and the 
efficiency and correctness of its use. 

RPT#: AD-P003430   84/03/00   84N30762 

UTTL: Ada (Trademark) as a program design language.  A 
rational approach to transitioning industry to the 
world of Ada through a program design language 
cri ter ia 
A/BLASEWITZ, R. M.   CORP: RCA Government Systems 
Div., Moorestown, N. J.   CSS: (Missile and Surface 
Radar.)   In ASD  Proc. Papers of the 2nd AFSC 
Avionics Standardization Conf., Vol. 1  p 509-513 (SEE 
N84-31121 21-06) 
The Department of Defense requirements to use the 
higher order language Ada by the mid-1980s will create 
challenges to developers of military software that 
encompass two major concerns: developing a core of Ada 
software personnel, and achieving productivity and 
software quality gains that have been targeted as Ada 
life cycle objectives. Because of recent government 
direction to use Ada-based PDLs, many organizations 
are developing prototype Ada-based design methods. The 
IEEE working group on Ada as a PDL is working on 
guidelines for the use of Ada-based design languages. 
The guidelines will include recommendations reflecting 
the current state of the art as well as alternative 
approaches in order to preserve good practice. The 
extent of industry's involvement with Ada PDLs, and 
also the status of the IEEE guidelines, may 
substantially impact both the acceptance of the Ada 
language and the efficiency of its use. 
AD-P003556   82/11/00   84N31160 

system designers to use Ada. This paper reviews 
progress to date. 

RPT#: AD-P003432   84/03/00   84N30764 
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UTTL: Seeding the Ada (trademark) software components 
industry 
A/BOWLES, K. CORP: Telesoft, San Diego, Calif. In 
Army Communications-Electronics Command Proc. of the 
2nd Ann. Conf. on Ada (Trademark) Technol. p 125-128 
(SEE N84-30745 20-61) 
The principal aim of the Ada effort is economic - 
particularly the enhancement of designer/programmer 
productivity in all parts of the software life-cycle. 
A shift in system design practice to widespread use of 
off-the-shelf large scale Ada software components 
would result in productivity gains exceeding a factor 
of ten - far more than likely to result from use of 
productivity enhancing software tools. To achieve 
widespread use of off-the-shelf Ada components 
requires establishment of a software components 
industry, and a shift in attitudes about education of 
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ABS: 
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UTTL: Ada - A good start, an exciting future 
A/BRAUN, C. L.   PAA: A/(SofTech, Inc., Waltham, MA) 
Defense Electronics (ISSN 0278-3479), vol. 17, duly 
1985, p. 105, 106. 
An evaluation is made of the utility of the U.S. 
Department of Defense standard computer language, Ada, 
at the current stage of its development, and the 
further performance improvements that may be obtained 
in the course of its development history. It is noted 
that the ful1 advantages that accrue to the 
comprehensive use of a single high order language by 
most Pentagon contractors will only begin to be 
realized as entirely new software-intensive projects 
are conceived; several major systems now entering 
service antedate Ada. It is not expected that 
fourth-generation high order languages incorporating 
refinements beyond those embodied in Ada will be ready 
in less than 10 years, which was the development 
period length for Ada itself.   85/07/00   85A41549 
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UTTL: Evaluation and Validation (E/V) team public 
report, volume 1 

AUTH; A/CASTOR, V. L.   CORP: Air Force Wright Aeronautical 
Labs., Wright-Patterson AFB, Ohio. 

ABS:  The initial activities and accomplishments of the 
Evaluation and Validation (E&V) Team are reported. The 
purpose of the E&V Task, which is sponsored by the Ada 
Joint Program Office (AJPO), is to develop the 
techniques and tools which will provide a capability 
to perform assessment of Ada Programming Support 
Environments (APSEs) and to determine conformance of 
APSEs to the Common APSE Interface Set (CAIS). As this 
technology is developed, it is being made available to 
DOD components, industry and academia. As with all 
Ada-related activities, the widest possible 
participation in the E&V Task is encouraged. 

RPT#: AD-A153609 AFWAL-TR-85-1016-VOL-1   84/11/30 
85N29584 

UTTL: Teaching Ada (trademark) at the US Military 
Academy 

AUTH: A/COGAN. K. J.   CORP: Military Academy, West Point, 
N. Y.   CSS: (Dept. of Geography and Computer Science. 
)   In Army Communications-Electronics Command  Proc. 
of the 2nd Ann. Conf. on Ada (Trademark) Technol.  p 
31-34 (SEE N84-30745 20-61) 

ABS:  A five year history of teaching Ada* with the NYU 
Ada/Ed translator has evolved into an effective 
methodology for teaching top-down engineering design 
simultaneously with a bottom-up presentation of the 
Ada grammar. With emphasis on embedded hardware 
systems, students are confronted with successively 
more difficult design problems which must be written 
and executed on a VAX-11/780. Exposed to the Ada 
features of packages, concurrency, generics, and 
exception handling, students design, write and execute 
an extensive term project simulating a real-time 
embedded system using Ada. Projects approach the 1000 
lines of source code limitation of the translator. 
Reusability of code is stressed by importing a 
previous year's package when feasible. 

KPJff:    AD-P003418   84/03/00   84N30750 

UTTL: Experimenting with the Rolm Ada language 
workshop for specifying and designing 

AUTH: A/COUSERGUE, M.;  B/PELLIZZARI, M.   CORP: Centre 
National d'Etudes Spatiales, Toulouse (France). 
Presented at DESS Training Session, Toulouse 

ABS:  The utilization of Ada Language in specifying and 
designing large real time computer programs for space 
studies applications is discussed. Comparison with 
languages such as SADT for specifications and PDL for 

designing, are made. The Ada development environment 
is presented theoretically and as a quality analysis. 
It is shown that Ada is not acceptable for program 
specifications, but quite adequate for designing. 
84/06/00   85N12607 

UTTL: The Ada (Trademark) run-time environment 
AUTH: A/CROSS, d. K.   CORP: Sperry Univac, St. Paul, Minn. 

CSS: (Defense Systems Div.)   In ASD  Proc. Papers of 
the 2nd AFSC Avionics Standardization Conf., Vol. 1  p 
533-538 (SEE N84-31121 21-06) 

ABS:  The requirements on an Ada run-time environment are 
surprisingly few and straightforward. The free choices 
left up to the implementors of a run-time environment 
are many and significant. These requirements and 
freedoms are enumerated and discussed, and the 
Importance of these issues to the success of an Ada 
software system is described. 

RPT#: AD-P003558   82/11/00   84N31162 
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UTTL: Using Ada for a distributed, fault tolerant 
system 

AUTH: A/DEWOLF, J. B.;  B/SODANO, N. M.;  C/WHITTREDGE, R. 
S.   PAA : C/(Charles Stark Draper Laboratory, Inc., 
Cambridge, MA)   CORP: Draper (Charles Stark) Lab., 
Inc., Cambridge, Mass.   IN: Digital Avionics Systems 
Conference, 6th, Baltimore, MD, December 3-6, 1984, 
Proceedings (A85-17801 06-01). New York, American 
Institute of Aeronautics and Astronautics, 1984, p. 
477-484. 

ABS:  It is pointed out that advanced avionics applications 
increasingly require underlying machine architectures 
which are damage and fault tolerant, and which provide 
access to distributed sensors, effectors and 
high-throughput computational resources. The Advanced 
Information Processing System (AIPS), sponsored by 
NASA, is to provide an architecture which can meet the 
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UTTL: Diana reference manual, revision 3 
A/EVANS, A., JR.;  B/BUTLER, K. J.   CORP: Tartan 
Labs., Inc., Pittsburgh, Pa. 
This document describes Diana, a Descriptive 
Intermediate Attributed Notation for Ada, being both 
an introduction and reference manual for it. Diana is 
an abstract data type such that each object of the 
type is a representation of an intermediate form of an 
Ada program. Although the initial uses of this form 
were for communication between the Front and Back Ends 
of an Ada compiler, it is also intended to be suitable 
for use with other tools in an Ada programming 
environment. Diana resulted from a merger of the best 
properties of two earlier similar intermediate forms: 
TCOL and AIDA. 
AD-A128232 TL-83-4   83/02/28   83N35684 

UTTL: Software development methodologies and Ada.  Ada 
methodologies:  Concepts and requirements, Ada 
methodology questionnaire summary, comparing software 
design methods for Ada:  A study plan 

AUTH: A/FREEMAN, P.;  B/WASSERMAN, A. I.   CORP: California 
UniV. , Irvi ne. 

ABS:  This document rationalizes the need for the use of 
coherent software development methodologies in 
conjunction with Ada and its programming support 
environments (APSE's) and describes the 
characteristics that such methodologies should 
possess. It is recognized that software development, 
particularly for embedded systems, is increasingly 
done in the context of overall systems development, 
including hardware and environmental factors. While 
there is a strong need for integrated systems 
engineering, this document focuses on the software 
issues only. Emphasis is thus given to the process by 
which software is developed for Ada applications, not 
Just with the language or its automated support 
environment. The development activity yields a 
collection of work products (including source and 
object versions of Ada programs). These work products 
are valuable not only through the development phase, 
but also through the entire lifetime of the system as 
modifications and enhancements are made to the system. 

RPT#: AD-A123710   82/11/00   83N26541 

UTTL: Parameterized programming 
AUTH: A/GOGUEN. d. A.   PAA: A/(SRI International, Menlo 

Park; Stanford University, Stanford, CA)   IEEE 
Transactions on Software Engineering (ISSN 0098-5589), 
vol. SE-10, Sept. 1984, p. 528-543. 

ABS:  The present investigation is concerned with a 
technique called 'parameterized programming' which can 
greatly extend the opportunities for reusing software 
modules. The basic idea of parameterized programming 
is to maximize program reuse by storing programs in as 
general a form as possible. The implementation of this 
concept requires a suitable notion of a parameterized 
module, along with the capability for instantiating 
the parameters of such modules, and the capability for 
encapsulating existing code into modules. Language 
features to support parameterized programming are 
considered along with an illustration of parameterized 
programming with some simple examples written in the 
OBJ programming system now under development. 
Attention is given to the hierarchical structure, 
rewrite rules, details regarding parameterized 
modules, and the denotational semantics of OBJ. 
84/09/00   85A11097 
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UTTL: Ada compiler validation summary report:  ROLM 
Ada compiler, version 4.42 V-002 
A/GOODENOUGH, J. B.   CORP: Softech.'Inc., Waltham, 
Mass. 
This report describes the results of the validation 
effort for the following Ada translator: Host Machine: 
ROLM MSE/800, Data General MV/4000, MV/6000, MV/8000, 
and MV/10000; Operating System: AOS/VS-Ada 2.03; Host 
Disk System: 2.96 megabyte drives; Target Machine: 
ROLM MSE/800, Data General MV/4000, MV/6000, MV/8000, 
and MV/10000; Operating System: AOS/VS-Ada 2.03; 
Language Version; ANSI/MIL-STD-1815A Ada; Translator 
Version: 4.42; and Validator Version: 1.1 (March 4, 
1983). Testing of this translator was conducted by 
SofTech, Inc. The purpose of this report is to 
document the results of the testing performed on the 
translator, and in particular, to: identify any 
language constructs, supported by the translator that 
do not conform to the Ada standard; identify any 
unsupported language constructs required by the Ada 
standard; and describe implementation-dependent 
behavior allowed by the standard. 
AD-A136732   83/05/12   84N20199 

UTTL: Ada (trademark) design language concerns 
A/GRAU, J. K.;  B/COMER, E. R.   CORP: Harris Corp., 
Melbourne, Fla.   In Army Communications-Electronics 
Command  Proc. of the 2nd Ann. Conf. on Ada 
(Trademark) Technol.  p 115-124 (SEE N84-30745 20-61) 
This paper examines key language concerns regarding 
Ada Design Languages (DL's) in regard to: life cycle 
applicability; the information expressed by an Ada DL; 
relationship of an Ada DL to the Ada language; 
extensions of the Ada language through structured 
commentary and annotation; and the relationship 
between methodology and Ada Design Language. An 
assessment is made of the relative maturity of Ada 
DL's and of the obstacles to successful development of 
an Ada DL standard. 
AD-P003431   84/03/00   84N30763 

UTTL: An advanced host-target environment for the 
military computer family 
A/HART, H.;  B/HART, R.;  C/MUENNICHOW, I.   CORP: 
TRW, Inc., Redondo Beach, Calif.   In Army 
Communications-Electronics Command  Proc. of the 2nd 
Ann. Conf. on Ada (Trademark) Technol.  p 89-101 (SEE 
N84-30745 20-61) 
As part of the Military Computer Family Operating 
System (MCFOS) project, extensions to the Ada Language 
System (ALS) are being constructed which allow 
software for the MCF computers to be developed and 
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UTTL: An automated methodology deve 
A/HAWLEY, L. R.   PAA: A/(Californi 
Technology, Jet Propulsion Laborato 
CORP: Jet Propulsion Lab., Californ 
Pasadena.   IN: Simulation in Ada; 
Eastern Simulation Conference, Norf 
1985 (A85-34127 15-61). San Diego. 
Computer Simulation, 1985, p. 1-5. 
research. 
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UTTL: An expansive view of reusable software 
A/HOROWITZ, E.;  B/MUNSON, J. B.   PAA: A/(Southern 
California, University, Los Angeles, CA);  B/(System 
Development Corp., Camarillo, CA)   IEEE Transactions 
on Software Engineering (ISSN 0098-5589), vol. SE-10, 
Sept. 1984, p. 477-487. 
Developments related to software development have not 
kept pace with advances related to computer hardware, 
and the cost of software development has become 
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expensive. One of the reasons for this phenomenon 
Involves a lack of significant improvements made in 
the productivity of software development work. The 
present investigation is concerned with a concept 
which has the potential for increasing software 
productivity. That concept is now known by the 
expression 'reusable software'. The advantages of an 
employment of reusable software are related to the 
observation that much of the code of one system is 
virtually identical to code which was previously 
written. In one example, it was found that 40-60 
percent of actual program code was repeated in more 
than one application. However, previous attempts to 
utilize reusability concepts have not been entirely 
successful. The current investigation has the 
objective to examine reusability in its many forms and 
to discuss their merits, primarily in the domain of 
programming customized software systems.   84/09/00 
85A11095 

UTTL: Preliminary program manager's guide to Ada 
A/HOWE, R. G.;  B/BYRNE, W. E.;  C/GRUND, E. C; 
D/HILLIARD, R. F. I. ;  E/MUNCK, R. G.   CORP: Mitre 
Corp., Bedford, Mass. 
This draft guide provides current information that 
should help a Program Manager in making decisions 
relative to the use of Ada. It discusses pertinent Air 
Force and DoD policy, effects of Ada on contractual 
documentation, and steps that must be taken to apply 
Ada. This guide identifies benefits and inherent risks 
of using Ada, and Program Office initiatives needed to 
control risk. It cites factors that will affect 
programmer training, software cost and schedule 
estimation, design, and configuration management. As 
background information, the basic features of Ada and 
the software needed to support programming in Ada are 
described. The guide will be issued after review. 
AD-A140347 WP-25012 ESD-TR-83-255   84/02/00 
B4N26457 

engineering education and training. These concepts 
will result in an effective use of Ada in the shortest 
time possible to realize cost savings and achieve 
reliability and adaptability in computer software 
development. The full potential of Ada cannot be 
realized without appropriate education and training. 

RPT#: AD-A148774 AD-E500686 IDA-M-7 IDA/HQ-84-28940 
84/11/00   85N17592 

UTTL: An evaluation of the needs and requirements for 
the establishment of an Ada (trade name) liaison 
organizat1 on 

AUTH: A/dORSTAD, N. D.;  B/LEE, d. A. N.;  C/LOMONACO, S. 
d., dR.   CORP: Institute for Defense Analyses, 
Alexandria, Va.   CSS: (Science and Technology Div.) 

ABS:  This report examines the needs of the Ada doint 
Program Office (AdPO) in the establishment of an 
organization (to be called the Ada Liaison 
Organization (ALO)) for the "sustenance' of the Ada 
language following the acceptance of the language as s 
National standard and during the early stages of 
implementation, expansion of applicability, and 
development of supporting systems. It Is proposed. In 
view of the number of overlapping needs of various 
responsibilities, that such an organization be formed 
as a single unit so as to maintain coordination, but 
with distinct subentities Interacting with the 
differing internal and external agencies which have 
cognizance of some phase of the Ada activity. The 
ultimate responsibility for the continued support and 
development of Ada remains with AJPO. The Ada Liaison 
Organization will provide recommendations for the 
administration of the Military Standard, the American 
National Standard and other related standards or 
specifications. The proposed charter of the ALO Is 
presented in the Appendix. 

RPT#: AD-A122286 AD-E500546 IDA-P-1681 IDA/HQ-82-24869 
82/09/00   83N21825 
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UTTL: Will Ada succeed? 
A/KLEIN, D. PAA: A/(Rolm C 
Defense Electronics (ISSN 02 
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UTTL: A proposal for standard basic functions in Ada 
A/KOK, J.;  B/SYMM, G. T.   PAA: A/(Centrum voor 
Wiskunde en Informatica, Amsterdam)   CORP: National 
Physical Lab., Teddington (England).   CSS: (Div. of 
Information Technology and Computing.) 
A standard basic mathematical functions package for 
scientific computation in Ada is proposed. The package 
is transportable to machines with different 
floating-point types and its availability enhances the 
portability of numerical software. 
NPL-DITC-45/84 ISSN-0262-5369 CWI-NM-R8407 PB85-118701 
84/06/00   85N14584 
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UTTL: An Ada (tradema 
distributed computer 
A/LANE, D. S.;  B/HUL 
Hughes Aircraft Co., 
Communicat ions-Electr 
Ann. Conf. on Ada (Tr 
N84-30745 20-61) 
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UTTL: An optimizing table driven code generator for an 
Ada compi1er 
A/LEGNARD, T. M.   PAA: A/(Florida State University, 
Tallahassee, FL)   IN: SOUTHEASTCON '83; Proceedings 
of the Region 3 Conference and Exhibit, Orlando, FL, 
April 11-13, 1983 (A85-28101 11-33). New York, 
Institute of Electrical and Electronics Engineers, 
Inc., 1983, p. 81-85. 
The code generator presented in this paper is part of 
an Ada cross-compiler, hosted on a CDC Cyber 6000 
series computer and targeted for the Z8002 
microprocessor, presently being developed at Florida 
State University. It is a table driven code generator 
automatically constructed  from an attribute grammar 
description of a translation from an intermediate 
language of the compiler to a Z8002 assembly language. 
The code generator tables are automatically derived 
from the grammar using an attribute grammar processor 
and an LALR(1) parser generator, thus automating much 
of the code generation process.   83/00/00   85A28103 

UTTL: Ada status and outlook 
AUTH: A/KRAMER, J. F., JR.   CORP: Ada Joint Program Office, 

Arlington, Va.   In AGARD  Software for Avionics  6 p 
(SEE N83-22112 12-01) 

ABS:  The Ada programming language is discussed.   83/01/00 
83N22123 
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UTTL: A specification technique for the common APSE 
(Ada programming support environments) interface set 
A/LINDQUIST, T. E.;  B/FACEMIRE, J. L.;  C/KAFURA, D. 
G.   CORP: Virginia Polytechnic Inst. and State Univ. 
Blacksburg.   CSS: (Dept. of Computer Science.) 
This report demonstrates an approach to specifying 
kernel Ada support environment interface components. 



The objectives are to provide a mechanism which allows 
building a complete enough specification for 
validation, an understandable specification, and one 
that is relatively easy to construct. In meeting these 
objectives, an Abstract Machine approach has been 
modified and applied to functional description of 
kernel operations. After motivating an explaining the 
approach, the paper exemplifies its utility. 
Interactions among kernel operations and pragmatic 
implementation limits, which are other needed parts of 
a specification, are also discussed. 

RPTif: AD-A140889 CS84004-R   84/04/00   84N27479 

UTTL: Design of Ada systems yielding reusable 
components - An approach using structured algebraic 
specif icat ion 

AUTH: A/LITVINTCHOUK, S. D.;  B/MATSUMOTO, A. S.   PAA: 
A/(Mitre Corp., Bedford, MA);  B/(ITT Advanced 
Technology Center, Stratford, CT)   IEEE Transactions 
on Software Engineering (ISSN 0098-5589), vol. SE-10, 
Sept. 1984, p. 544-551. 

ABS:  Experience with design of Ada software has indicated 
that a methodology, based on formal algebra, can be 
developed which integrates the design and management 
of reusable components with Ada systems design. The 
methodology requires the use of a specification 
language, also based on formal algebra, to extend 
Ada's expressive power for this purpose. It is shown 
that certain requirements for the use of Ada packages 
which cannot be expressed in Ada can be expressed in 
algebraic specification languages, and that such 
specifications can then be implemented in Ada. 
84/09/00   85A11098 

UTTL: Annotation language design for Ada (ANNA) 
AUTH: A/LUCKHAM, D. C.   CORP: Stanford Univ., Calif.   CSS: 

(Computer Systems Lab.) 
ABS:  This interim report covers research work on Annotation 

language design for Ada. The major goal of this 
research was the design and development of programming 
tools that may be incorporated into an Ada Programming 
Support Environment during the mid-1980's time frame. 
Since Ada is a very advanced language containing many 
essential new features such as tasking, and standard 
Ada tools such as compilers do not yet exist, the 
research has been structured so as to approach the 
major goal by first studying the error detection 
problem for subsets of Ada corresponding to already 
highly used languages such as Pascal. The error 
detection problem as an important starting point 
because this attempts to analyse programs for common 
errors without assuming that the programs have 
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accompanying annotations. At the start of this project 
no formal annotation language for Ada existed. The 
second phase of the research effort was to design an 
annotation language for Ada, called ANNA. This would 
provide a basis for verification of Ada programs in 
general. This second report deals with the work on the 
design of ANNA. 
AD-A140452 RADC-TR-83-298   84/01/00   84N26336 
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UTTL: Ada advanced error detector 
A/LUCKHAM, D. C.   CORP: Stanford Univ. 
(Computer Systems Lab.) 
This is the final technical report on a 
entitled "Ada Advanced Error Detector. 
this project was to study techniques of detecting 
common runtime errors in sequential Ada at 
compile-time using verification techniques, high level 
annotation languages, and runtime detection of 
deadness errors in Ada tasking. This work has resulted 
in a working prototype implementation of a system for 
detecting and diagnosing tasking errors. 
AD-A140273 RADC-TR-83-299   84/01/00   84N26334 

UTTL: Software library:  A reus 
A/METCALF, S. G.   CORP: Naval 
Monterey, Calif. 
This thesis presents a conceptual vi 
Software Library. Issues concerning 
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AD-A150722   84/06/00   85N24816 
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UTTL: Flowcharting with D-charts 
A/MEYER, D.   CORP: Jet Propulsion Lab., California 
Inst. of Tech., Pasadena. 
A D-Chart is a style of flowchart using control 
symbols highly appropriate to modern structured 
programming languages. The intent of a D-Chart is to 
provide a clear and concise one-for-one mapping of 
control symbols to high-level language constructs for 
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purposes of design and documentation. The notation 
lends itself to both high-level and code-level 
algorithmic description. The various issues that may 
arise when representing, in D-Chart style, algorithms 
expressed in the more popular high-level languages are 
addressed. In particular, the peculiarities of mapping 
control constructs for Ada, PASCAL, FORTRAN 77, C, 
PL/I, Jovial J73, HAL/S, and Algol are discussed. 
NASA-CR-175641 JPL-PUB-84-99 NAS 1.26:175641 
85/01/15   85N24806 

loss density curve (ELDC) which provide information 
pertaining to two conflicting performance criteria: 
insensitivity to impulsive noise contamination and 
efficacy (power). Based on the proposed performance 
measures and descriptors some detectors, such as, the 
linear or the quadratic detector are shown to be 
nonrobust. Their comparison in adverse noise 
conditions with what is considered as robust 
detectors, in the framework of the presented theory, 
is improper.   82/00/00   83N13327 
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UTTL: Impact of ADA on the software life cycle 
AUTH: A/MICKEL, S. B.   PAA: A/(General Electric Co., 

Sunnyvale, CA)   IN: Computers in Aerospace 
Conference, 4th, Hartford, CT, October 24-26, 1983, 
Collection of Technical Papers (A84-10001 01-59). New 
York, American Institute of Aeronautics and 
Astronautics, 1983, p. 200-204. 

ABS:  The introduction of the ADA programming language to 
the software development process is discussed. The 
software life cycle is outlined and illustrated with 
block diagrams, and it is shown that ADA, because of 
its flexibility, will affect almost every aspect of 
the cycle, especially the phase transitions (where 
different languages meet using present techniques), 
the design methodology, software reusability, and 
programmer training. While experience with ADA is 
required to maximize the benefits it offers, some 
preliminary recommendations (for the next few years) 
can be made, including revision of the military 
standard specifications, types, and forms; 
modification of software-acquisition practices to 
promote reusability; standard nomenclature for 
embedded systems; and the development of training 
programs based on sets of graduated examples. 

RPT/f:    AIAA PAPER 83-2362   83/00/00   84A10030 

UTTL: Adaptive robust and nonparmetric procedures with 
application to communications, radar, sonar and array 
signal processing 

AUTH: A/MIHAJLOVIC, R. A.   CORP: Polytechnic Inst. of New 
York, Brooklyn. 

ABS:  The qualitative aspects of robustness in the signal 
detection framework is addressed. Local and global 
robustness properties of the detector are investigated 
and various approaches to the quantitative and 
qualitative characterization of the robustness are 
introduced. The measures of robustness are easy to 
calculate and provide valuable information about 
performance of the detector in a severe noise 
environment. Of particular interest to the designer is 
the efficacy robustness curve (ERC) and the efficacy 
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83/03/00   83N31338 

UTTL: Ada-Europe guidelines for Ada compiler 
specifications and selection 
A/NISSEN, J. C. D.;  B/WICHMANN, B. A.;  C/DOWLING, T. 
;  D/GOLDSACK, S.;  E/JEANROD, H.;  F/MONTGOMERY, A.; 
G/PIERCE, R.;  H/REFICE, M.;  I/THETHANG, N.; 
J/TAFVELIN, S.   CORP: National Physical Lab., 
Teddington (England).   CSS: (Div. of Information 
Technology and Computing.) 
The Ada language reference manual defines the language 
rather than indicating a list of the desirable 
properties of an implementation of the language. The 
characteristics of an implementation that should be 
taken into account in the specification or selection 
of an Ada compiler are listed. 
NPL-DITC-10/82 ISSN-0262-5369   82/10/00   83N18287 



UTTL: Ada-Europe guidelines for the portability of Ada 
programs, second edition 

AUTH: A/NIS5EN, J. C. P.;  B/WALLIS, P.;  C/WICHMANN, B. A.; 
D/BARNES, d.;  E/BRIGGS, 0.:       F/DOWLING, T.; 
G/GOLDSACK, S.;  H/JEANROND, H.;  I/MONTANEGRO, C; 
J/MONTGOMERY, A.   CORP: National Physical Lab., 
Teddington (England).   CSS: (Div. of Information 
Technology and Computing.) 

ABS:  A users guide for designing and coding portable Ada 
programs is supplied. Layout and numbering follow the 
Ada language reference manual. Tasks, program 
structure, compilation issues, exceptions, generic 
program units, representation specifications, 
implementation dependent features, input/output 
routines, lexical elements, declarations, types, 
names, expressions, statements, subprograms, pacl<ages, 
and visibility rules are covered. Guidelines are 
classified as mandatory, recommended, or suggested. 

RPT#: NPL-DITC-27/83 ISSN-0262-5369   83/07/00   84N12739 

UTTL: Kernel ADA Programming Support Environment 
(KAPSE) interface team:  Public report, volume 2 

AUTH: A/OBERNDORF, P. A.   CORP: Naval Ocean Systems Center. 
San Diego, Calif. 

ABS:  The continuing'activities of the Kernel Ada 
Programming Support Environments (KAPSE) interface 
team and its industry/academia auxiliary are reported. 
(Ada is a recent, DOD-developed programming language.) 
The Ada Joint Program Office (AdPO)-sponsored effort 
will ensure the interoperability and transportability 
of tools and data bases among different KAPSE 
implementations. The effort is the result of a 
Memorandum of Agreement (MOA) among the three' services 
directing the establishment of an evaluation team, 
chaired by the Navy, to identify and establish KAPSE 
interface standards. As with previous ADA-related 
developments, the widest possible participation is 
being encouraged to create a broad base of experience 
and acceptance in industry, academia, and the DOD. 

RPT#: AD-A123136 NOSC/TD-552-VOL-2   82/10/28   83N24198 

AUTH 

ABS: 

UTTL: Mapping 
A/OCONNELL, S. 
Tal1ahassee, F 
of the Region 
April 11-13, 1 
Institute of E 
Inc., 1983, p. 
This paper des 
and back ends 
microprocessor 
called the Tra 

Ada onto a simple virtual machine 
PAA: A/(Florida State University, 

L)   IN: SOUTHEASTCON '83; Proceedings 
3 Conference and Exhibit, Orlando, FL, 
983 (A85-28101 11-33). New York, 
lectrical and Electronics Engineers, 
73-77. 

cribes the interface between the front 
of an Ada compiler for the Z8000 

This interface consists of a program 
verser, which translates the 

intermediate language produced by the front end into 
the second intermediate language (IL2), which is the 
input to a table-driven code generator. The traverser, 
the IL2, and the method of code generation have 
features which make the compiler easily retargetable. 
The IL2 code is directed toward a virtual machine with 
a stack based, byte-addressable memory. Target 
machine-related details in the Traverser are 
parameterized. The Traverser does all of the storage 
binding, and interacts with the Code Generator only 
through a table of IL2 operators.   83/00/00 
85A28102 

UTTL: Configuration management and the ADA programming 
support environment 

AUTH: A/PULFORD, K. d.   CORP: Marconi Avionics Ltd., 
Boreham Wood (England).   In AGARD  Software for 
Avionics  10 p (SEE N83-22112 12-01) 

ABS:  It is the aim of software development environments to 
increase the efficiency with which software is 
produced. One such environment is the ADA programming 
support environment (APSE) Initiated by the U.S. 
Department of Defence. These environments are a great 
benefit to programmers making some of their tasks much 
easier. They also offer great opportunities to monitor 
and control software development. This in its turn 
will affect the way that projects are organized and 
run, and it will affect project personnel jobs to 
varying extents. The way that projects will be 
affected by the adoption of an APSE is explored by 
considering the way that Configuration Management can 
be implemented in an APSE.   83/01/00   83N22131 

UTTL: Artificial intelligence in Ada (trademark): 
Pattern-directed processing 

AUTH: A/REEKER, L. H.;  B/KREUTER, d.;  C/WAUCHOPE, K. 
CORP: Tulane Univ., New Orleans, La. 

ABS:  If the programming language Ada is to be widely used 
in artificial intelligence applications, it will be 
necessary to demonstrate to programmers that it can 
provide superior facilities for use in that domain. 
One means of doing this is to provide facilities for 
pattern-directed programming within Ada. This report 
includes three papers, of which the first is designed 
to serve as an introduction to pattern-directed 
programming and to the significance of the two papers 
that follow. It includes: discussions of artificial 
intelligence programming and the facilities provided 
by the Ada language, pattern-directed computation, 
pattern matching, and parsing. The other two papers 
deal with the use of Ada for pattern-directed 
programming. One paper deals with efficient 
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implementation of pattern matching (within Ada) is 
1 important, because pattern matching tends to be 
inefficient, leading to problems with excessive 
processing time. Another paper treats extensions of 
pattern-direction from strings to more general data 
structures of the sort used in artificial 
i ntel1igence. 

RPT#: AD-A156230 AFHRL-TR-85-12   85/O5/O0   85N35671 

UTTL: Teach Ada (trademark) as the student's first 
programming language? 

AUTH: A/RICHMAN, M. S.   CORP: Pennsylvania State Univ., 
Middletown.   In Army Communications-Electronics 
Command  Proc. of the 2nd Ann. Conf. on Ada 
(Trademark) Technol.  p 50-54 (SEE N84-30745 20-61) 

ABS:  In designing an Ada programming course within our 
colleges and universities, one of the first issues we 
must confront is the level of expertise we shall set 
as prerequisite to the course. Ada is a very rich and 
complex language. Must the student have experience 
with some other high order language in order to 
appreciate Ada? The speaker contends that programming 
in Ada can be taught in a meaningful way to the 
neophyte and, in fact, there are decided advantages 
inherent in learning Ada as a first language. Some 
suggestions are offered for coping with the size and 
complexity of Ada. 

RPT#; AD-P003422   84/03/00   84N30754 

UTTL: Program development with Byron 
AUTH: A/SENGUPTA, S.;  B/SNYDER, G.   PAA: B/(Intermetrics, 

Inc., Cambridge, MA)   IN: NAECON 1984; Proceedings of 
the National Aerospace and Electronics Conference, 
Dayton, OH, May 21-25, 1984. Volume 2 (A85-44976 
21-01). New York, IEEE, 1984, p. 687-694. 

ABS:  BYRON, which provides a program development language 
(PDL) based on the Ada(+) programming language and a 
set of tools is presented. The tools, which include 
the BYRON language analyzer, a document generator, and 
a text formatter, are discussed. The BYRON data flow 
is shown, as are examples of package specification, 
algorithm design and implementation, output list of 
units, and user manual output.   84/00/00   85A45071 

UTTL: Ada programming design languages - A report on 
their status 

AUTH: A/SHEFFIELD, J. R.;  B/LINDLEY, L.   PAA: A/(SofTech, 
Inc., Dayton, OH);  B/(U.S. Navy, Naval Avionics 
Center, Indianapolis, IN)   IN: NAECON 1983; 
Proceedings of the National Aerospace and Electronics 
Conference, Dayton, OH, May 17-19, 1983. Volume 2 

(A84-16526 05-01). New York, Institute of Electrical 
and Electronics Engineers, 1983, p. 968-972. 

ABS:  A survey was performed of Ada-based methodology, tool 
developments and related project developments which 
support the concept of using the Ada language as a 
Programming Design Language (PDL). The survey 
categorized the work being performed by various 
companies and individuals, synopsized the work which 
has been documented to date, and assessed the work 
relative to its use as a PDL in an Ada framework. The 
findings of this survey were used to recommend 
guidelines for an Ada PDL adequate for use on upcoming 
Navy projects. These guidelines address the popular 
topic of whether an Ada PPL should be a proper subset 
of the Ada language, the method for which English 
narrative may be used to keep the description at the 
design rather than code level, and the mechanism for 
adding information to the design not covered by the 
software engineering concepts embodied in the Ada 
language proper.   83/00/00  84A16645 

UTTL: Applied research in Ada 
AUTH: A/STERNE, D. F.   PAA: A/(dohns Hopkins University, 

Laurel, MD)   Johns Hopkins APL Technical Digest (ISSN 
0270-5214), vol. 5, July-Sept. 1984, p. 266-269. 

ABS:  Ada is a new state-of-the-art computer programming 
language developed by the Department of Defense for 
embedded computer systems. Ada represents a modern 
approach to reducing software life-cycle costs. In 
connection with the adoption of Ada by the armed 
services, certain transition problems arise. For this 
reason, it was decided to conduct a three-phase 
program of applied research. The program objectives 
are discussed, taking into account the progress made 
in the studies. The objectives of the first phase were 
to gain hands-on programming experience and to acquire 
familiarity with the central technical issues 
surrounding Ada and the Ada Programming Support 
Environment. The objectives of Phase 2 are to explore 
the issues of applying Ada to Navy tactical software 
systems, while Phase 3 is concerned with the 
development of some specific spinoff products. 
84/09/00   85A12219 

UTTL: Guidelines for the design of large modular 
scientific libraries in Ada 

AUTH: A/SYMM, G. T.;  B/WICHMANN, B. A.;  C/KOK, J.; 
D/WINTER, D. T.   PAA: A/(National Physical Lab., 
Teddington, England);  B/(National Physical Lab., 
Teddington. England)   CORP: Center for Mathematics 
and Computer Science, Amsterdam (Netherlands).   CSS: 
(Dept. of Numerical Mathematics.) 



ABS: 

RPT#: 

AUTH: 

ABS: 

RPT/?: 

Solutions for the design and Implementation of 
scientific subroutine libraries in Ada are suggested. 
Precision, basic mattiematical functions, composite 
data types, information passing, error handling, 
working space organization, and real time environment 
are considered. 
CWI-NM-N8401 B8469329   84/03/00   84N30792 

UTTL: Guidelines for the design of 
scientific libraries in Ada 
A/SYMM, G. T.; B/WICHMANN, B. A.; 
D/WINTER, D. T. PAA: C/(Stichtin 
Centrum); D/(Stichting Mathematis 
National Physical Lab., Teddington 
Div. of Information Technology and 
Guidelines for constructing numeri 
packages for basic computations, a 
packages, using Ada are presented, 
precision, composite data types, i 
error handling, working space orga 
time environment are discussed. 
NPL-DITC-28/83 ISSN-0262-5369 IR-2 
83/07/00   84N12740 

large modular 

C/KOK, d.; 
g Mathematisch 
ch Centrum)   CORP: 
(England).   CSS: ( 
Comput ing.) 
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nd applicat ions 
Problems related to 
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identified. The design of the Ada Language System 
(ALS) is then described in terms of these basic 
capabilities. The ALS is a computer programming 
support environment for Ada. 

RPTfS': AD-P003416   84/03/00   84N30748 

UTTL: The Army Ada (trademark) education program 
AUTH: A/TURNER, D. J.   CORP: Army 

Communications-Electronics Command, Fort Monmouth, 
N.J.   CSS: (Center for Tactical Computer Systems.) 
In its Proc. of the 2nd Ann. Conf. on Ada (Trademark) 
Technol.  p 1-4 (SEE N84-30745 20-61) 

ABS:  In behalf of the U.S. Army, CENTACS is pursuing a 
comprehensive and aggressive Ada program. An important 
aspect of that program is the development and transfer 
of public domain Ada educational and training 
materials which are focused on the needs of the 
academic, industrial and government communities. This 
paper provides an overview of the Army's Ada education 
and training program and summarizes the products and 
materials which are being produced under contracts 
with Softech, Inc., New York University and Jersey 
City State College. 

RPT#: AD-P0034 14   84/03/00   84N30746 

UTTL: The US Army model Ada (trademark) training 
curr iculum 

AUTH: A/TEXEL, P. P.   CORP: Softech, Inc., Waltham, Mass. 
In Army Communications-Electronics Command  Proc. of 
the 2nd Ann. Conf. on Ada (Trademark) Technol.  p 5-10 
(SEE N84-30745 20-61) 

ABS:  This paper describes the U.S. Army Model Ada Training 
Curriculum, developed by Softech, Inc. for the U.S. 
Army, Ft. Monmouth, N.J. The curriculum consists of 
individual modules which can be grouped together to 
form the courses and training plans that best satisfy 
the needs of specific organizations. The paper 
describes the modules in terms of content, 
prerequisites, and status, as of the date of this 
conference. Finally, the paper addresses how a manager 
might go about using this curriculum to satisfy the 
training needs of his organization. 

RPT#: AD-P003415   84/03/00   84N30747 

UTTL: Configuration management with the Ada 
(trademark) language 

AUTH: A/THALL, R. M.   CORP: Softech, Inc., Waltham. Mass. 
In Army Communications-Electronics Command  Proc. of 
the 2nd Ann. Conf. on Ada (Trademark) Technol.  p 
11-24 system (SEE N84-30745 20-61) 

ABS:  Three characteristics of large software projects and 
five basic configuration management capabilities are 

UTTL: An attribute grammar for the semantic analysis 
of Ada 

AUTH: A/UHL, J.;  B/DROSSOPOULOU, S.;  C/PERSCH, G.; 
D/GOOS. G.;  E/DAUSMANN, M.;   F/WINTERSTEIN, G.; 
G/KIRCHGAESSNER, W.   PAA: G/(Kar1sruhe, Universitaet, 
Karlsruhe. West Germany)   Research supported by the 
Bundesamt fuer Wehrtechnik und Beschaffung,. Berlin, 
Springer-Verlag (Lecture Notes in Computer Science, 
Volume 139) , 1982, 517 p. 

ABS:  An attribute grammar (AG) that specifies the semantics 
of the programming language Ada is presented. The 
development of the AG is traced, together with the 
applications of semantic analysis within a front-end 
compiler. Attention is given to attribute value, 
language elements, entities, syntactic units, and 
words which change meaning with position in the typed 
text. The procedure followed in the development of the 
attribute grammar is explored and the AG is compared 
with other grammars. Attribute types are defined, as 
are constants, the STANDARD package, and the start 
environment. Terminals and nonterminals and their 
attributes are inventoried, as are the syntactic rules 
and the semantic functions.   82/00/00   83A45140 
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UTTL: Ada developments 
AUTH: A/VANKATWIJK, d.   CORP: Technische Hogeschool , Delft 

(Netherlands).   CSS: (Dept. of Mathematics and 
InformatIon.) 

ABS:  Worldwide developments around the programming language 
Ada are discussed. Structuring and data structures in 
the Ada subset are described. 

RPT#: REPT-84-28   84/00/00   85N29604 

UTTL: A concurrent PASCAL implementation on a Rolm 
1664 

AUTH: A/VANMEURS, W. d.   CORP: National Aerospace Lab., 
Amsterdam (Netherlands).   CSS: (Informatics Div.) 
Presented at 2nd European Rolm Users Group Conf., 
Wiesbaden, West Germany, 22-23 Mar. 1983 

ABS:  Concurrent PASCAL (CP) was studied as an intermediate 
step in the changeover to the Ada language. The 
transportation of a CP computer and run time 
environment from a POP 11/45 to a Rolm 1664 to be used 
In airborne applications is described. Ways in which 
CP contributes to reusable software because of its 
language structure and machine independence are 
discussed. Transportation of the complete software 
system (operating system plus application programs) 
proves to be feasible. As the system being transported 
is already run, testing of the new implementation can 
be confined to the virtual machine. The results are 
Increased programmer productivity and program 
rel1abi1i ty. 

RPT#: NLR-MP-83035-U   83/06/12   84N28531 

UTTL: The use of Ada in digital flight control systems 
AUTH: A/WESTERMEIER, T. F.;  B/HANSEN, H. E.   PAA: 

B/(McDonnell Aircraft Co., St. Louis, MO)   IN: 
Guidance, Navigation and Control Conference, Snowmass, 
CO, August 19-21, 1985. Technical Papers (A85-45876 
22-08). New York, AIAA, 1985, p. 597-603. 

ABS:  A microprocessor-based, parallei-processing flight 
control system has been built around the F-15 Eagle 
Dual Control Augmentation System and has been 
successfully flight tested. The microprocessors are 
programmed using Ada, the Department of Defense 
standard high order language. It is widely agreed that 
Ada has the potential for reducing software life cycle 
costs through increased programmer productivity. To 
use Ada and realize the productivity gains, however, 
the compiler must be reasonably efficient. The use of 
Ada is discussed, therefore, from these two 
Interrelated standpoints: software productivity and 
compiler efficiency. The productivity gains and the 
level of efficiency actually achieved are highlighted. 

RPT/C: AIAA PAPER 85-1953   85/00/00   85A45939 

UTTL: Tutorial material 
AUTH: A/WICHMANN, B. A.   PAA: 

London)   CORP: National 
(England).   CSS: (Div. 
Comput ing.) 

ABS:  Ada programming language 
outlined, with exercises 
numerical computation bu 
floating point; notation 
approximate computation; 
for the investigation of 
data types; and portabil 

RPT#: NFL-DITC-34/83 ISSN-0262 
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of Information Technology and 
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t not with Ada. Fixed and 
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numerical accuracy; complex 
ity issues are covered. 
-5369   84/01/00   84N27458 
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UTTL: Utilization of Ada as 
AUTH: A/WYLIE, G. d.;  B/WATT, T. 

Postgraduate School, Monter 
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